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Preface

There are three main upgrades to this 10th edition. The first is to
acknowledge that almost everyone now has access to a personal
computer and to the World Wide Web, so the instructions for data
analysis with a pocket calculator have been removed. Details of
calculations remain for readers to replicate, since otherwise
statistical analysis becomes too ‘black box’. References are made to
computer packages. Some of the analyses are now available on
standard spreadsheet packages such as Microsoft Excel, and there
are extensions to such packages for more sophisticated analyses.
Also, there is now extensive free software on the Web for doing
most of the calculations described here. For a list of software and
other useful statistical information on the Web, one can try http://
www.execpc.com/~helberg/statistics.html or http://members.aol.
com/johnp71/javastat.html. For a free general statistical package, I
would suggest the Center for Disease Control program EPI-INFO
at http://www.cdc.gov/epo/epi/epiinfo.htm. A useful glossary of
statistical terms has been given through the STEPS project at
http://www.stats.gla.ac.uk/steps/glossary/index.html. For simple
online calculations such as chi-squared tests or Fisher’s exact test
one could try SISA from http://home.clara.net/sisa/. Sample size
calculations are available at http://www.stat.uiowa.edu/~rlenth/
Power/index.html. For calculating confidence intervals I recommend
a commercial package, the BMJ’s own CIA, details of which are
available from http://www.medschool.soton.ac.uk/cia/. Of course,
free software comes with no guarantee of accuracy, and for serious
analysis one should use a commercial package such as SPSS, SAS,
STATA, Minitab or StatsDirect.

The availability of software means that we are no longer
restricted to tables to look up P values. I have retained the tables
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in this edition, because they are still useful, but the book now
promotes exact statements of probability, such as P = 0·031, rather
than 0·01 < P < 0·05. These are easily obtainable from many
packages such as Microsoft Excel.

The second upgrade is that I have considerably expanded the
section on the description of binary data. Thus the book now deals
with relative risk, odds ratios, number needed to treat/harm and
other aspects of binary data that have arisen through evidence-based
medicine. I now feel that much elementary medical statistics is best
taught through the use of binary data, which features prominently in
the medical literature.

The third upgrade is to add a section on reading and reporting
statistics in the medical literature. Many readers will not have
to perform a statistical calculation, but all will have to read and
interpret statistical results in the medical literature. Despite efforts
by statistical referees, presentation of statistical information in the
medical literature is poor, and I thought it would be useful to have
some tips readily available.

The book now has a companion, Statistics at Square Two, and
reference is made to that book for the more advanced topics.

I have updated the references and taken the opportunity to
correct a few typos and obscurities. I thank readers for alerting
me to these, particularly Mr A F Dinah. Any remaining errors are
my own.

M J Campbell

http://www.shef.ac.uk/personal/m/michaelcampbell/index.html

PREFACE
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1 Data display
and summary

Types of data
The first step, before any calculations or plotting of data, is to
decide what type of data one is dealing with. There are a number
of typologies, but one that has proven useful is given in Table 1.1.
The basic distinction is between quantitative variables (for which
one asks “how much?”) and categorical variables (for which one
asks “what type?”).

Quantitative variables can be either measured or counted. Measured
variables, such as height, can in theory take any value within a given
range and are termed continuous. However, even continuous variables
can only be measured to a certain degree of accuracy. Thus age is

1

Table 1.1 Examples of types of data.

Quantitative

Measured Counted

Blood pressure, height, Number of children in a family
weight, age Number of attacks of asthma per week

Number of cases of AIDS in a city

Categorical

Ordinal Nominal
(Ordered categories) (Unordered categories)

Grade of breast cancer Sex (male/female)
Better, same, worse Alive or dead
Disagree, neutral, agree Blood group O, A, B, AB



often measured in years, height in centimetres. Examples of crude
measured variables are shoe and hat sizes, which only take a limited
range of values. Counted variables are counts with a given time or
area. Examples of counted variables are number of children in a
family and number of attacks of asthma per week.

Categorical variables are either nominal (unordered) or ordinal
(ordered). Nominal variables with just two levels are often termed
binary. Examples of binary variables are male/female, diseased/not
diseased, alive/dead. Variables with more than two categories
where the order does not matter are also termed nominal, such as
blood group O, A, B, AB. These are not ordered since one cannot
say that people in blood group B lie between those in A and those
in AB. Sometimes, however, the categories can be ordered, and the
variable is termed ordinal. Examples include grade of breast cancer
and reactions to some statement such as “agree”, “neither agree
nor disagree” and “disagree”. In this case the order does matter
and it is usually important to account for it.

Variables shown in the top section of Table 1.1 can be converted
to ones below by using “cut off points”. For example, blood
pressure can be turned into a nominal variable by defining
“hypertension” as a diastolic blood pressure greater than 90 mmHg,
and “normotension” as blood pressure less than or equal to
90 mmHg. Height (continuous) can be converted into “short”,
“average” or “tall” (ordinal).

In general it is easier to summarise categorical variables, and so
quantitative variables are often converted to categorical ones for
descriptive purposes. To make a clinical decision about a patient,
one does not need to know the exact serum potassium level
(continuous) but whether it is within the normal range (nominal).
It may be easier to think of the proportion of the population who
are hypertensive than the distribution of blood pressure. However,
categorising a continuous variable reduces the amount of information
available and statistical tests will in general be more sensitive—that
is they will have more power (see Chapter 5 for a definition of
power)—for a continuous variable than the corresponding nominal
one, although more assumptions may have to be made about the
data. Categorising data is therefore useful for summarising results,
but not for statistical analysis. However, it is often not appreciated
that the choice of appropriate cut off points can be difficult, and
different choices can lead to different conclusions about a set of data.

These definitions of types of data are not unique, nor are they
mutually exclusive, and are given as an aid to help an investigator
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decide how to display and analyse data. Data which are effectively
counts, such as death rates, are commonly analysed as continuous
if the disease is not rare. One should not debate overlong the
typology of a particular variable!

Stem and leaf plots
Before any statistical calculation, even the simplest, is performed

the data should be tabulated or plotted. If they are quantitative and
relatively few, say up to about 30, they are conveniently written
down in order of size.

For example, a paediatric registrar in a district general hospital
is investigating the amount of lead in the urine of children from a
nearby housing estate. In a particular street there are 15 children
whose ages range from 1 year to under 16, and in a preliminary
study the registrar has found the following amounts of urinary lead
(µmol/24 h), given in Table 1.2.

A simple way to order, and also to display, the data is to use a stem
and leaf plot. To do this we need to abbreviate the observations to
two significant digits. In the case of the urinary concentration data,
the digit to the left of the decimal point is the “stem” and the digit
to the right the “leaf”.

We first write the stems in order down the page. We then work
along the data set, writing the leaves down “as they come”. Thus,
for the first data point, we write a 6 opposite the 0 stem. We thus
obtain the plot shown in Figure 1.1.

DATA DISPLAY AND SUMMARY
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Table 1.2 Urinary concentration of lead in 15 children from housing
estate (µmol/24 h).

0·6, 2·6, 0·1, 1·1, 0·4, 2·0, 0·8, 1·3, 1·2, 1·5, 3·2, 1·7, 1·9, 1·9, 2·2

Stem
0
1
2
3

Leaf
6
1
6
2

1
3
0

4
2
2

8
5 7 9 9

Figure 1.1 Stem and leaf “as they come”.



We then order the leaves, as in Figure 1.2.
The advantage of first setting the figures out in order of size and

not simply feeding them straight from notes into a calculator (for
example, to find their mean) is that the relation of each to the next
can be looked at. Is there a steady progression, a noteworthy hump,
a considerable gap? Simple inspection can disclose irregularities.
Furthermore, a glance at the figures gives information on their
range. The smallest value is 0·1 and the largest is 3·2 µmol/24 h.
Note that the range can mean two numbers (smallest, largest)
or a single number (largest minus smallest). We will usually use the
former when displaying data, but when talking about summary
measures (see Chapter 2) we will think of the range as a single
number.

Median
To find the median (or mid point) we need to identify the point

which has the property that half the data are greater than it, and
half the data are less than it. For 15 points, the mid point is clearly
the eighth largest, so that seven points are less than the median,
and seven points are greater than it. This is easily obtained from
Figure 1.2 by counting from the top to the eighth leaf, which is
1·50 µmol/24 h.

To find the median for an even number of points, the procedure
is as follows. Suppose the paediatric registrar obtained a further
set of 16 urinary lead concentrations from children living in the
countryside in the same county as the hospital (Table 1.3).
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Stem
0
1
2
3

Leaf
1
1
0
2

4
2
2

6
3
6

8
5 7 9 9

Figure 1.2 Ordered stem and leaf plot.

Table 1.3 Urinary concentration of lead in 16 rural children (µmol/24 h).

0·2, 0·3, 0·6, 0·7, 0·8, 1·5, 1·7, 1·8, 1·9, 1·9, 2·0, 2·0, 2·1, 2·8, 3·1, 3·4



To obtain the median we average the eighth and ninth points (1·8
and 1·9) to get 1·85 µmol/24 h. In general, if n is even, we average
the (n/2)th largest and the (n/2 + 1)th largest observations.

The main advantage of using the median as a measure of location
is that it is “robust” to outliers. For example, if we had accidentally
written 34 rather than 3·4 in Table 1.2, the median would still
have been 1·85. One disadvantage is that it is tedious to order a
large number of observations by hand (there is usually no “median”
button on a calculator).

An interesting property of the median is shown by first subtracting
the median from each observation, and changing the negative signs
to positive ones (taking the absolute difference). For the data in
Table 1.2 the median is 1·5 and the absolute differences are 0·9,
1·1, 1·4, 0·4, 1·1, 0·5, 0·7, 0·2, 0·3, 0·0, 1·7, 0·2, 0·4, 0·4, 0·7. The
sum of these is 10·0. It can be shown that no other data point will
give a smaller sum. Thus the median is the point ‘nearest’ all the
other data points.

Measures of variation
It is informative to have some measure of the variation of

observations about the median. The range is very susceptible to
what are known as outliers, points well outside the main body of
the data. For example, if we had made the mistake of writing
32 instead 3·2 in Table 1.2, then the range would be written as
0·1 to 32 µmol/24 h, which is clearly misleading.

A more robust approach is to divide the distribution of the data
into four, and find the points below which are 25%, 50% and 75%
of the distribution. These are known as quartiles, and the median is
the second quartile. The variation of the data can be summarised
in the interquartile range, the distance between the first and third
quartile, often abbreviated to IQR. With small data sets and if the
sample size is not divisible by 4, it may not be possible to divide
the data set into exact quarters, and there are a variety of proposed
methods to estimate the quartiles. A simple, consistent method is
to find the points which are themselves medians between each end
of the range and the median. Thus, from Figure 1.2, there are
eight points between and including the smallest, 0·1, and the
median, 1·5. Thus the mid point lies between 0·8 and 1·1, or 0·95.
This is the first quartile. Similarly the third quartile is mid way
between 1·9 and 2·0, or 1·95. Thus, the interquartile range is 0·95
to 1·95 µmol/24 h.

DATA DISPLAY AND SUMMARY

5



Data display
The simplest way to show data is a dot plot. Figure 1.3 shows

the data from Tables 1.2 and 1.3 together with the median for each
set. Take care if you use a scatterplot option to plot these data:
you may find the points with the same value are plotted on top of
each other.

Sometimes the points in separate plots may be linked in some
way, for example the data in Tables 1.2 and 1.3 may result from a
matched case–control study (see Chapter 13 for a description of this
type of study) in which individuals from the countryside were
matched by age and sex with individuals from the town. If possible,
the links should be maintained in the display, for example by joining
matching individuals in Figure 1.3. This can lead to a more sensitive
way of examining the data.

When the data sets are large, plotting individual points can be
cumbersome. An alternative is a box–whisker plot. The box is
marked by the first and third quartile, and the whiskers extend to the
range. The median is also marked in the box, as shown in Figure 1.4.
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Figure 1.3 Dot plot of urinary lead concentrations for urban and rural
children (with medians).



It is easy to include more information in a box–whisker plot.
One method, which is implemented in some computer programs,
is to extend the whiskers only to points that are 1·5 times the
interquartile range below the first quartile or above the third
quartile, and to show remaining points as dots, so that the number
of outlying points is shown.

Histograms
Suppose the paediatric registrar referred to earlier extends the

urban study to the entire estate in which the children live. He
obtains figures for the urinary lead concentration in 140 children
aged over 1 year and under 16. We can display these data as a
grouped frequency table (Table 1.4). They can also be displayed
as a histogram, as in Figure 1.5.

Bar charts
Suppose, of the 140 children, 20 lived in owner occupied

houses, 70 lived in council houses and 50 lived in private rented
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accommodation. Figures from the census suggest that for this age
group, throughout the county, 50% live in owner occupied houses,
30% in council houses, and 20% in private rented accommodation.
Type of accommodation is a categorical variable, which can be
displayed in a bar chart. We first express our data as percentages:
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Table 1.4 Lead concentration in 140 urban children.

Lead concentration (µmol/24 h) Number of children

0– 2
0·4– 7
0·8– 10
1·2– 16
1·6– 23
2·0– 28
2·4– 19
2·8– 16
3·2– 11
3·6– 7
4·0– 1
4·4
Total 140
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Figure 1.5 Histogram of data from Table 1.4.



14% owner occupied, 50% council house, 36% private rented. We
then display the data as a bar chart. The sample size should always
be given (Figure 1.6).

Common questions
What is the distinction between a histogram
and a bar chart?

Alas, with modern graphics programs the distinction is often lost.
A histogram shows the distribution of a continuous variable and,
since the variable is continuous, there should be no gaps between
the bars. A bar chart shows the distribution of a discrete variable
or a categorical one, and so will have spaces between the bars. It is
a mistake to use a bar chart to display a summary statistic such as
a mean, particularly when it is accompanied by some measure of
variation to produce a “dynamite plunger plot”1. It is better to use
a box–whisker plot.

How many groups should I have for a histogram?

In general one should choose enough groups to show the shape
of a distribution, but not too many to lose the shape in the noise.
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It is partly aesthetic judgement but, in general, between 5 and 15,
depending on the sample size, gives a reasonable picture. Try to
keep the intervals (known also as “bin widths”) equal. With equal
intervals the height of the bars and the area of the bars are both
proportional to the number of subjects in the group. With unequal
intervals this link is lost, and interpretation of the figure can
be difficult.

Displaying data in papers
• The general principle should be, as far as possible, to show the

original data and to try not to obscure the design of a study in
the display. Within the constraints of legibility, show as much
information as possible. Thus if a data set is small (say, less
than 20 points) a dot plot is preferred to a box–whisker plot.

• When displaying the relationship between two quantitative
variables, use a scatter plot (Chapter 11) in preference to
categorising one or both of the variables.

• If data points are matched or from the same patient, link them
with lines where possible.

• Pie-charts are another way to display categorical data, but they
are rarely better than a bar-chart or a simple table.

• To compare the distribution of two or more data sets, it is often
better to use box–whisker plots side by side than histograms.
Another common technique is to treat the histograms as if they
were bar-charts, and plot the bars for each group adjacent to
each other.

• When quoting a range or interquartile range, give the two
numbers that define it, rather than the difference.

Exercises
Exercise 1.1

From the 140 children whose urinary concentration of lead was
investigated 40 were chosen who were aged at least 1 year but under
5 years. The following concentrations of copper (in µmol/24 h)
were found.

0·70, 0·45, 0·72, 0·30, 1·16, 0·69, 0·83, 0·74, 1·24, 0·77,
0·65, 0·76, 0·42, 0·94, 0·36, 0·98, 0·64, 0·90, 0·63, 0·55,
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0·78, 0·10, 0·52, 0·42, 0·58, 0·62, 1·12, 0·86, 0·74, 1·04,
0·65, 0·66, 0·81, 0·48, 0·85, 0·75, 0·73, 0·50, 0·34, 0·88

Find the median, range and quartiles.

Reference
1 Campbell MJ. Present numerical results. In: Reece D, ed. How to do it, Vol. 2.

London: BMJ Publishing Group, 1995:77–83.
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2 Summary statistics
for quantitative
and binary data

Summary statistics summarise the essential information in a data
set into a few numbers, which, for example, can be communicated
verbally. The median and the interquartile range discussed in
Chapter 1 are examples of summary statistics. Here we discuss
summary statistics for quantitative and binary data.

Mean and standard deviation
The median is known as a measure of location; that is, it tells us

where the data are. As stated in Chapter 1, we do not need to know
all the data values exactly to calculate the median; if we made the
smallest value even smaller or the largest value even larger, it
would not change the value of the median. Thus the median does
not use all the information in the data and so it can be shown to be
less efficient than the mean or average, which does use all values of
the data. To calculate the mean we add up the observed values and
divide by their number. The total of the values obtained in Table 1.2
was 22·5 µmol/24 h, which is divided by their number, 15, to give
a mean of 1·50 µmol/24 h. This familiar process is conveniently
expressed by the following symbols:

x– (pronounced “x bar”) signifies the mean; x is each of the
values of urinary lead; n is the number of these values; and 

∑
,

the Greek capital sigma (English “S”) denotes “sum of”. A major
disadvantage of the mean is that it is sensitive to outlying points. For

x– =         .
∑

x
n
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example, replacing 2·2 with 22 in Table 1.2 increases the mean to
2·82 µmol/24 h, whereas the median will be unchanged.

A feature of the mean is that it is the value that minimises the sum
of the squares of the observations from a point; in contrast, the
median minimises the sum of the absolute differences from a point
(Chapter 1). For the data in Table 1.1, the first observation is 0·6
and the square of the difference from the mean is (0·6−1·5)2 = 0·81.
The sum of the squares for all the observations is 9·96 (see Table 2.1).
No value other than 1·50 will give a smaller sum. It is also true that
the sum of the differences (now allowing both negative and positive
values) of the observations from the mean will always be zero.

As well as measures of location we need measures of how
variable the data are. We met two of these measures, the range and
interquartile range, in Chapter 1.

The range is an important measurement, for figures at the top
and bottom of it denote the findings furthest removed from
the generality. However, they do not give much indication of the
average spread of observations about the mean. This is where the
standard deviation (SD) comes in.

The theoretical basis of the standard deviation is complex and need
not trouble the user. We will discuss sampling and populations in
Chapter 3. A practical point to note here is that, when the population
from which the data arise have a distribution that is approximately
“Normal” (or Gaussian), then the standard deviation provides a
useful basis for interpreting the data in terms of probability.

The Normal distribution is represented by a family of curves
defined uniquely by two parameters, which are the mean and
the standard deviation of the population. The curves are always
symmetrically bell shaped, but the extent to which the bell is
compressed or flattened out depends on the standard deviation of
the population. However, the mere fact that a curve is bell shaped
does not mean that it represents a Normal distribution, because
other distributions may have a similar sort of shape.

Many biological characteristics conform to a Normal distribution
closely enough for it to be commonly used—for example, heights
of adult men and women, blood pressures in a healthy population,
random errors in many types of laboratory measurements and
biochemical data. Figure 2.1 shows a Normal curve calculated
from the diastolic blood pressures of 500 men, with mean 82 mmHg
and standard deviation 10 mmHg. The limits representing ± 1 SD,
± 2 SD and ±3 SD about the mean are marked. A more extensive
set of values is given in Table A in the Appendix.



The reason why the standard deviation is such a useful measure
of the scatter of the observations is this: if the observations follow
a Normal distribution, a range covered by one standard deviation
above the mean and one standard deviation below it (x– ± 1 SD)
includes about 68% of the observations; a range of two standard
deviations above and two below (x– ± 2 SD) about 95% of the
observations; and of three standard deviations above and three
below (x– ± 3 SD) about 99·7% of the observations. Consequently,
if we know the mean and standard deviation of a set of observations,
we can obtain some useful information by simple arithmetic. By
putting one, two or three standard deviations above and below the
mean we can estimate the range of values that would be expected to
include about 68%, 95% and 99·7% of the observations.

Standard deviation from ungrouped data
The standard deviation is a summary measure of the differences

of each observation from the mean of all the observations. If the
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differences themselves were added up, the positive would exactly
balance the negative and so their sum would be zero. Consequently
the squares of the differences are added. The sum of the squares
is then divided by the number of observations minus one to give
the mean of the squares, and the square root is taken to bring the
measurements back to the units we started with. (The division by
the number of observations minus one instead of the number of
observations itself to obtain the mean square is because “degrees of
freedom” must be used. In these circumstances they are one less
than the total. The theoretical justification for this need not trouble
the user in practice.)

To gain an intuitive feel for degrees of freedom, consider choosing
a chocolate from a box of n chocolates. Every time we come to
choose a chocolate we have a choice, until we come to the last one
(normally one with a nut in it!), and then we have no choice. Thus
we have n − 1 choices in total, or “degrees of freedom”.

The calculation of the standard deviation is illustrated in Table 2.1
with the 15 readings in the preliminary study of urinary lead
concentrations (Table 1.2). The readings are set out in column
(1). In column (2) the difference between each reading and the
mean is recorded. The sum of the differences is 0. In column (3)
the differences are squared, and the sum of those squares is given
at the bottom of the column.

The sum of the squares of the differences (or deviations) from
the mean, 9·96, is now divided by the total number of observation
minus one, to give a quantity known as the variance. Thus,

In this case we find:

Finally, the square root of the variance provides the standard 
deviation: √
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(∑
x − x–

)
2

n − 1
Variance = .

(∑
x − x–

)
2

n − 1
= ,

9·96
14

Variance = = 0·7114 (µmol/24 h)2.

SD



from which we get

SD =

This procedure illustrates the structure of the standard deviation,
in particular that the two extreme values 0·1 and 3·2 contribute
most to the sum of the differences squared.

Calculator procedure
Calculators often have two buttons for the SD, σσn and σσn−−1.

These use divisors n and n − 1 respectively. The symbol σ is the
Greek lower case “s”, for standard deviation.

The calculator formulae use the relationship
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Table 2.1 Calculation of standard deviation.

(1) (2) (3) (4)
Lead Differences Differences Observations in

Concentration from mean Squared Col (1) squared
(µmol/24 h) x − x– (x − x–)2 x2

x

0·1 −1·4 1·96 0·01
0·4 −1·1 1·21 0·16
0·6 −0·9 0·81 0·36
0·8 −0·7 0·49 0·64
1·1 −0·4 0·16 1·21
1·2 −0·3 0·09 1·44
1·3 −0·2 0·04 1·69
1·5 0 0 2·25
1·7 0·2 0·04 2·89
1·9 0·4 0·16 3·61
1·9 0·4 0·16 3·61
2·0 0·5 0·25 4·00
2·2 0·7 0·49 4·84
2·6 1·1 1·21 6·76
3·2 1·7 2·89 10·24

Total 22·5 0 9·96 43·71

n = 15, x– = 1·50.

0·7114 = 0·843 µmol/24 h.

σ2
n =

∑
(x − x–)2 = 

∑
x2 − = − x–2.1

n

∑
x2

n

(∑
x

)
2

n
1
n

[ ]

√



∑
x2 means square the x’s and then add them. The right hand

expression can be easily memorised by the expression “mean of the
squares minus the mean squared”. The variance σ2

n − 1 is obtained
from σ2

n − 1 = nσ2
n /(n − 1).

The above equation can be seen to be true in Table 2.1, where
the sum of the square of the observations, 

∑
x2, is given as 43·71.

We thus obtain

the same value given for the total in column (3). Care should be
taken because this formula involves subtracting two large
numbers to get a small one, and can lead to incorrect results if the
numbers are very large. For example, try finding the standard
deviation of 100 001, 100 002, 100 003 on a calculator. The correct
answer is 1, but many calculators will give 0 because of rounding
error. The solution is to subtract a large number from each of the
observations (say 100 000) and calculate the standard deviation
on the remainders, namely 1, 2 and 3. The variability of a set of
numbers is unaffected if we change every member of the set by
adding or subtracting the same constant.

Standard deviation from grouped data
We can also calculate a standard deviation for count variables.

For example, in addition to studying the lead concentration in the
urine of 140 children, the paediatrician asked how often each of them
had been examined by a doctor during the year. After collecting the
information he tabulated the data shown in Table 2.2 columns
(1) and (2). The mean is calculated by multiplying column (1) by
column (2), adding the products, and dividing by the total number
of observations.

As we did for continuous data, to calculate the standard deviation
we square each of the observations in turn. In this case the
observation is the number of visits, but because we have several
children in each class, shown in column (2), each squared number
(column (4)), must be multiplied by the number of children. The
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15
43·71 − = 9·96



sum of squares is given at the foot of column (5), namely 1697. We
then use the calculator formula to find the variance:

and

Note that although the number of visits is not Normally
distributed, the distribution is reasonably symmetrical about the
mean. The approximate 95% range is given by

3·25 − 2 × 1·25 = 0·75 to 3·25 + 2 × 1·25 = 5·75

This excludes two children with no visits and five children with six
or more visits. Thus there are 7 out of 140 = 5·0% outside the
theoretical 95% range.

Note that it is common for discrete quantitative variables to
have what is known as a skewed distribution, that is, they are not
symmetrical. One clue to lack of symmetry from derived statistics is
when the mean and the median differ considerably. Another is when
the standard deviation is of the same order of magnitude as the
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Table 2.2 Calculation of the standard deviation from count data.

(1) (2) (3) (4) (5)
Number of Number Col (2) Col (1) Col (2)
visits to or of × squared ×
by doctor children Col (1) Col (4)

0 2 0 0 0
1 8 8 1 8
2 27 54 4 108
3 45 135 9 405
4 38 152 16 608
5 15 75 25 375
6 4 24 36 144
7 1 7 49 49

Total 140 455 1697

Mean number of visits = 455/140 = 3·25

1·57 = 1·25.SD =
√

(1679 − 4552 /140)
139

Variance = = 1·57



mean, but the observations must be non-negative. Sometimes a
transformation will convert a skewed distribution into a symmetrical
one. When the data are counts, such as number of visits to a doctor,
often the square root transformation will help, and if there are no
zero or negative values a logarithmic transformation may render the
distribution more symmetrical.

Data transformation
An anaesthetist measures the pain of a procedure using a 100 mm

visual analogue scale on seven patients. The results are given in
Table 2.3, together with the loge transformation (the In button on a
calculator).

The data are plotted in Figure 2.2, which shows that the outlier
does not appear so extreme in the logged data. The mean and median
are 10·29 and 2, respectively, for the original data, with a standard
deviation of 20·22. Where the mean is bigger than the median, the
distribution is positively skewed. For the logged data the mean and
median are 1·24 and 1·10 respectively, which are relatively close,
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Table 2.3 Results from pain score on seven patients (mm).

Original scale: 1, 1, 2, 3, 3, 6, 56
loge scale: 0, 0, 0·69, 1·10, 1.10, 1·79, 4·03
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Figure 2.2 Dot plots of original and logged data from pain scores.



indicating that the logged data have a more symmetrical distribution.
Thus it would be better to analyse the logged transformed data in
statistical tests than using the original scale.

In reporting these results, the median of the raw data would be
given, but it should be explained that the statistical test was carried
out on the transformed data. Note that the median of the logged
data is the same as the log of the median of the raw data—however,
this is not true for the mean. The mean of the logged data is not
necessarily equal to the log of the mean of the raw data. The
antilog (exp or ex on a calculator) of the mean of the logged data
is known as the geometric mean, and is often a better summary
statistic than the mean for data from positively skewed distributions.
For these data the geometric mean is 3·45 mm.

A number of articles have discussed transforming variables.1,2 A
number of points can be made:

• If two groups are to be compared, a transformation that
reduces the skewness of an outcome variable often results in the
standard deviations of the variable in the two groups being
similar.

• A log transform is the only one that will give sensible results on
a back transformation.

• Transforming variables is not “cheating”. Some variables are
measured naturally on a log scale (for example, pH).

Between subjects and within subjects
standard deviation

If repeated measurements are made of, say, blood pressure on an
individual, these measurements are likely to vary. This is within
subject, or intrasubject, variability, and we can calculate a standard
deviation of these observations. If the observations are close
together in time, this standard deviation is often described as the
measurement error. Measurements made on different subjects vary
according to between subject, or intersubject, variability. If many
observations were made on each individual, and the average taken,
then we can assume that the intrasubject variability has been
averaged out and the variation in the average values is due solely
to the intersubject variability. Single observations on individuals
clearly contain a mixture of intersubject and intrasubject variation,
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but we cannot separate the two since the within subject variability
cannot be estimated with only one observation per subject. The
coefficient of variation (CV%) is the intrasubject standard deviation
divided by the mean, expressed as a percentage. It is often quoted
as a measure of repeatability for biochemical assays, when an assay
is carried out on several occasions on the same sample. It has the
advantage of being independent of the units of measurement, but
also numerous theoretical disadvantages. It is usually nonsensical
to use the coefficient of variation as a measure of between subject
variability.

Summarising relationships between
binary variables

There are a number of ways of summarising the outcome from
binary data. These include the absolute risk reduction, the relative
risk, the relative risk reduction, the number needed to treat and the
odds ratio. We discuss how to calculate these and their uses in
this section.

Kennedy et al.3 report on the study of acetazolamide and
furosemide versus standard therapy for the treatment of post
haemorrhagic ventricular dilatation (PHVD) in premature babies.
The outcome was death or a shunt placement by 1 year of age.
The results are given in Table 2.4.

The standard method of summarising binary outcomes is to use
proportions or percentages. Thus 35 out of 76 children died or had
a shunt under standard therapy, and this is expressed as 35/76 or
0·46. This is often expressed as a percentage, 46%, and for a
prospective study such as this the proportion can be thought of
as a probability of an event happening or a risk. Thus under the
standard therapy there was a risk of 0·46 of dying or getting a
shunt by 1 year of age. In the drug plus standard therapy the risk
was 49/75 = 0·65.

In clinical trials, what we really want is to look at the contrast
between differing therapies. We can do this by looking at the
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Table 2.4 Results from PHVD trial3.

Death/shunt No death/shunt Total

Standard therapy 35 41 76
Drug plus standard therapy 49 26 75



difference in risks, or alternatively the ratio of risks. The difference
is usually expressed as the control risk minus the experimental risk
and is known as the absolute risk reduction (ARR). The difference in
risks in this case is 0·46 − 0·65 = −0·19 or −19%. The negative sign
indicates that the experimental treatment is this case appears to be
doing harm. One way of thinking about this is if 100 patients were
treated under standard therapy and 100 treated under drug
therapy, we would expect 46 to have died or have had a shunt in
the standard therapy and 65 in the experimental therapy. Thus
an extra 19 had a shunt placement or died under drug therapy.
Another way of looking at this is to ask: how many patients would
be treated for one extra person to be harmed by the drug therapy?
Nineteen adverse events resulted from treating 100 patients and so
100/19 = 5·26 patients would be treated for 1 adverse event. Thus
roughly if 6 patients were treated with standard therapy and 6 with
drug therapy, we would expect 1 extra patient to die or require a
shunt in the drug therapy. This is known as the number needed to
harm (NNH) and is simply expressed as the inverse of the absolute
risk reduction, with the sign ignored. When the new therapy is
beneficial it is known as the number needed to treat (NNT)4 and
in this case the ARR will be positive. For screening studies it is
known as the number needed to screen, that is, the number of people
that have to be screened to prevent one serious event or death.5

The number needed to treat has been suggested by Sackett et al.6

as a useful and clinically intuitive way of thinking about the outcome
of a clinical trial. For example, in a clinical trial of prevastatin against
usual therapy to prevent coronary events in men with moderate
hypercholestremia and no history of myocardial infarction, the NNT
is 42. Thus you would have to treat 42 men with prevastatin to
prevent one extra coronary event, compared with the usual therapy.
It is claimed that this is easier to understand than the relative risk
reduction, or other summary statistics, and can be used to decide
whether an effect is “large” by comparing the NNT for different
therapies.

However, it is important to realise that comparison between
NNTs can only be made if the baseline risks are similar. Thus,
suppose a new therapy managed to reduce 5 year mortality of
Creutzfeldt–Jakob disease from 100% on standard therapy to 90%
on the new treatment. This would be a major breakthrough and
has an NNT of (1/(1 − 0·9)) = 10. In contrast, a drug that reduced
mortality from 50% to 40% would also have an NNT of 10, but
would have much less impact.
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We can also express the outcome as a risk ratio or relative risk (RR),
which is the ratio of the two risks, experimental risk divided by
control risk, namely 0·46/0·65 = 0·71. With a relative risk less
than 1, the risk of an event is lower in the control group. The relative
risk is often used in cohort studies. It is important to consider the
absolute risk as well. The risk of deep vein thrombosis in women
on a new type of contraceptive is 30 per 100 000 women years,
compared to 15 per 100 000 women years for women on the old
treatment. Thus the relative risk is 2, which shows that the new type
of contraceptive carries quite a high risk of deep vein thrombosis.
However, an individual woman need not be unduly concerned since
she has a probability of 0·0003 of getting a deep vein thrombosis
in 1 year on the new drug, which is much less than if she were
pregnant!

We can also consider the relative risk reduction (RRR) which is
(control risk minus experimental risk)/control risk; this is easily
shown to be 1−RR, often expressed as a percentage. Thus a patient
in the drug arm of the PHVD trial is at approximately 29% higher
risk of experiencing an adverse event relative to the risk of a patient
in the standard therapy group.

When the data come from a cross-sectional study or a case–
control study (see Chapter 13 for a discussion of these types of
studies) then rather than risks, we often use odds. The odds of an
event happening are the ratio of the probability that it happens to
the probability that it does not. If P is the probability of an event
we have:

Odds (event) =         .

Thus the odds of a die showing a “6” on a single throw are 1:5.
This is often also expressed as a proportion: thus 1/5 = 0·2.

To illustrate why this may be useful consider Table 2.5, showing
the prevalence of hay fever and eczema in a cross-sectional survey
of children aged 11.7,8
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1−P

Table 2.5 Association between hay fever and eczema in children aged 117,8.

Hay fever present Hay fever absent Total

Eczema present 141 420 561
Eczema absent 928 13 525 14 453
Total 1069 13 945 15 014



If you have hay fever the risk of eczema is 141/1069 = 0·132
and the odds are 0·132/(1 − 0·132) = 0·152. Note that this could
be calculated from the ratio of those with and without eczema:
141/928 = 0·152. If you do not have hay fever the risk of eczema is
420/13 945 = 0·030, and the odds are 420/13 525 = 0·031. Thus
the relative risk of having eczema, given that you have hay fever, is
0·132/0·030 = 4·4. We can also consider the odds ratio, which is
0·152/0·031 = 4·90.

We can consider the table the other way around, and ask what is
the risk of hay fever given that a child has eczema. In this case the
two risks are 141/561 = 0·251 and 928/14 453 = 0·064, and the
relative risk is 0·251/0·064 = 3·92. Thus the relative risk of hay
fever given that a child has eczema is 3·92, which is not the same
as the relative risk of eczema given that a child has hay fever.
However, the two respective odds are 141/420 = 0·336 and
928/13 525 = 0·069 and the odds ratio is 0·336/0·069 = 4·87,
which to the limits of rounding is the same as the odds ratio for
eczema, given a child has hay fever.

The fact that the two odds ratios are the same can be seen from
the fact that

OR =

which remains the same if we switch rows and columns.
Another useful property of the odds ratio is that the odds ratio

for an event not happening is just the inverse of the odds ratio for
it happening. Thus, the odds ratio for not getting eczema, given
that a child has hay fever, is just 1/4·90 = 0·204. This is not true of
the relative risk, where the relative risk for not getting eczema given
hay fever is (420/561)/(13 525/14 453) = 0·80, which is not 1/3·92.
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141 × 13 525
928 × 420

Table 2.6 Odds ratios and relative risks for different
values of absolute risks (P1, P2).

P1 P2 Relative risk Odds ratio
P1/P2 P1/(1−P1)

P2/(1−P2)

0·1 0·05 2·00 2·11
0·3 0·15 2·00 2·42
0·5 0·25 2·00 3·00
0·7 0·35 2·00 4·33



Table 2.6 demonstrates an important fact: the odds ratio is a
close approximation to the relative risk when the absolute risks are
low, but is a poor approximation if the absolute risks are high.

The odds ratio is the main summary statistic to be obtained from
case–control studies (see Chapter 13 for a description of case–control
studies). When the assumption of a low absolute risk holds true
(which is usually the situation for case–control studies) then the
odds ratio is assumed to approximate the relative risk that would
have been obtained if a cohort study had been conducted.

Choice of summary statistics for
binary data

Table 2.7 gives a summary of the different methods of
summarising a binary outcome for a prospective study such as a
clinical trial. Note how in the PHVD trial the odds ratio and
relative risk differ markedly, because the event rates are quite high.

Common questions
When should I quote the mean and when should
I quote the median to describe my data?

It is a commonly held misapprehension that for Normally
distributed data one uses the mean, and for non-Normally
distributed data one uses the median. Alas, this is not so: if the
data are approximately Normally distributed the mean and the
median will be close; if the data are not Normally distributed then
both the mean and the median may give useful information.
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Table 2.7 Methods of summarising a binary outcome in a two group
prospective study: Risk in group 1 (control) is P1, risk in group 2 is P2.

Term Formula Observed in PHVD trial

Absolute risk reduction P1 − P2 0·46 − 0·65 = − 0·19
(ARR)
Relative risk (RR) P1 /P2 0·46/0·65 = 0·71
Relative risk reduction (P1 − P2)/P1 (0·46 − 0·65)/0·65 = − 0·29
(RRR)
Number needed to treat 1/|P1−P2| 1/0·19 = 6
or harm (NNT or NNH)
Odds ratio (OR) P1/(1−P1) (0·46/0·54)/(0·65/0·35) = 0·46

P2 /(1−P2)



Consider a variable that takes the value 1 for males and 0 for
females. This is clearly not Normally distributed. However, the
mean gives the proportion of males in the group, whereas the
median merely tells us which group contained more than 50% of
the people. Similarly, the mean from ordered categorical variables
can be more useful than the median, if the ordered categories can be
given meaningful scores. For example, a lecture might be rated as
1 (poor) to 5 (excellent). The usual statistic for summarising the
result would be the mean. For some outcome variables (such as
cost) one might be interested in the mean, whatever the distribution
of the data, since from the mean can be derived the total cost for a
group. However, in the situation where there is a small group at one
extreme of a distribution (for example, annual income) then the
median will be more “representative” of the distribution.

When should I use a standard deviation
to summarise variability?

The standard deviation is only interpretable as a summary measure
for variables that have approximately symmetric distributions. It is
often used to describe the characteristics of a group, for example, in
the first table of a paper describing a clinical trial. It is often used,
in my view incorrectly, to describe variability for measurements
that are not plausibly normal, such as age. For these variables, the
range or interquartile range is a better measure. The standard
deviation should not be confused with the standard error, which is
described in Chapter 3 and where the distinction between the two
is spelled out.

When should I quote an odds ratio and when
should I quote a relative risk?

The odds ratio is difficult to understand, and most people think
of it as a relative risk anyway. Thus for prospective studies the
relative risk should be easy to derive and should be quoted, and not
the odds ratio. For case–control studies one has no option but to
quote the odds ratio. For cross-sectional studies one has a choice,
and if it is not clear which variables are causal and which are
outcome, then the odds ratio has the advantage of being symmetric,
in that it gives the same answer if the causal and outcome variables
are swapped. A major reason for quoting odds ratios is that they
are the output from logistic regression, an advanced technique
discussed in Statistics at Square Two9. These are quoted, even for
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prospective studies, because of the nice statistical properties of
odds ratios. In this situation it is important to label the odds ratios
correctly and consider situations in which they may not be good
approximations to relative risks.

Reading and displaying summary statistics
• In general, display means to one more significant digit than the

original data, and SDs to two significant figures more. Try to
avoid the temptation to spurious accuracy offered by computer
printouts and calculator displays!

• Consider carefully if the quoted summary statistics correctly
summarise the data. If a mean and standard deviation are
quoted, is it reasonable to assume 95% of the population are
within 2 SDs of the mean? (Hint: if the mean and standard
deviation are about the same size, and if the observations must
be positive, then the distribution will be skewed).

• If a relative risk is quoted, is it in fact an odds ratio? Is it
reasonable to assume that the odds ratio is a good approximation
to a relative risk?

• If an NNT is quoted, what are the absolute levels of risk? If you
are trying to evaluate a therapy, does the absolute level of risk
given in the paper correspond to what you might expect in your
own patients?

• Do not use the ± symbol for indicating an SD.

Exercises
Exercise 2.1

In the campaign against smallpox a doctor inquired into the
number of times 150 people aged 16 and over in an Ethiopian
village had been vaccinated. He obtained the following figures:
never, 12 people; once, 24; twice, 42; three times, 38; four times, 30;
five times, 4. What is the mean number of times those people
had been vaccinated and what is the standard deviation? Is the
standard deviation a good measure of variation in this case?

Exercise 2.2

Obtain the mean and standard deviation of the data in Exercise 1.1
and an approximate 95% range. Which points are excluded from
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the range mean − 2 SD to mean + 2 SD? What proportion of the
data is excluded?

Exercise 2.3

In a prospective study of 241 men and 222 women undergoing
elective inpatient surgery, 37 men and 61 women suffered nausea
and vomiting in the recovery room.10 Find the relative risk and
odds ratio for nausea and vomiting for women compared to men.
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3 Populations and
samples

Populations
In statistics the term “population” has a slightly different meaning
from the one given to it in ordinary speech. It need not refer only
to people or to animate creatures—the population of Britain, for
instance, or the dog population of London. Statisticians also speak
of a population of objects, or events, or procedures, or observations,
including such things as the quantity of lead in urine, visits to the
doctor or surgical operations. A population is thus an aggregate of
creatures, things, cases and so on.

Although a statistician should define clearly the relevant
population, he or she may not be able to enumerate it exactly. For
instance, in ordinary usage the population of England denotes
the number of people within England’s boundaries, perhaps as
enumerated at a census. But a physician might embark on a
study to try to answer the question “What is the average systolic
blood pressure of Englishmen aged 40–59?”. But who are the
“Englishmen” referred to here? Not all Englishmen live in
England, and the social and genetic background of those that
do may vary. A surgeon may study the effects of two alternative
operations for gastric ulcer. But how old are the patients? What
sex are they? How severe is their disease? Where do they live? And
so on. The reader needs precise information on such matters to
draw valid inferences from the sample that was studied to the
population being considered. Statistics such as averages and
standard deviations, when taken from populations, are referred
to as population parameters. They are often denoted by Greek
letters; the population mean is denoted by µ (mu) and the standard
deviation denoted by σ (lower case sigma).
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Samples
A population commonly contains too many individuals to study

conveniently, so an investigation is often restricted to one or more
samples drawn from it. A well chosen sample will contain most of
the information about a particular population parameter, but the
relation between the sample and the population must be such as
to allow true inferences to be made about a population from
that sample.

Consequently, the first important attribute of a sample is that
every individual in the population from which it is drawn must
have a known non-zero chance of being included in it; a natural
suggestion is that these chances should be equal. We would like the
choices to be made independently; in other words, the choice of
one subject will not affect the chance of other subjects being
chosen. To ensure this we make the choice by means of a process
in which chance alone operates, such as spinning a coin or, more
usually, the use of a table of random numbers. A limited table is
given in Table F (in the Appendix), and more extensive ones
have been published.1–4 A sample so chosen is called a random
sample. The word “random” does not describe the sample as such,
but the way in which it is selected.

To draw a satisfactory sample sometimes presents greater
problems than to analyse statistically the observations made on it.
A full discussion of the topic is beyond the scope of this book, but
guidance is readily available.1,2 In this book only an introduction
is offered.

Before drawing a sample the investigator should define the
population from which it is to come. Sometimes he or she can
completely enumerate its members before beginning analysis—for
example, all the livers studied at necropsy over the previous year,
all the patients aged 20–44 admitted to hospital with perforated
peptic ulcer in the previous 20 months. In retrospective studies of
this kind numbers can be allotted serially from any point in the
table to each patient or specimen. Suppose we have a population
of size 150, and we wish to take a sample of size 5. Table F contains
a set of computer generated random digits arranged in groups of
five. Choose any row and column, say the last column of five digits.
Read only the first three digits, and go down the column starting
with the first row. Thus we have 265, 881, 722, etc. If a number
appears between 001 and 150 then we include it in our sample.
Thus, in order, in the sample will be subjects numbered 24, 59,
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107, 73, and 65. If necessary we can carry on down the next column
to the left until the full sample is chosen.

The use of random numbers in this way is generally preferable
to taking every alternate patient or every fifth specimen, or acting
on some other such regular plan. The regularity of the plan can
occasionally coincide by chance with some unforeseen regularity in
the presentation of the material for study—for example, by hospital
appointments being made by patients from certain practices on
certain days of the week, or specimens being prepared in batches
in accordance with some schedule.

As susceptibility to disease generally varies in relation to age,
sex, occupation, family history, exposure to risk, inoculation state,
country lived in or visited, and many other genetic or environmental
factors, it is advisable to examine samples when drawn to see
whether they are, on average, comparable in these respects. The
random process of selection is intended to make them so, but
sometimes it can by chance lead to disparities. To guard against
this possibility the sampling may be stratified. This means that a
framework is laid down initially, and the patients or objects of the
study in a random sample are then allotted to the compartments of
the framework. For instance, the framework might have a primary
division into males and females and then a secondary division of
each of those categories into five age groups, the result being a
framework with ten compartments. It is then important to bear in
mind that the distributions of the categories on two samples made
up on such a framework may be truly comparable, but they will
not reflect the distribution of these categories in the population
from which the sample is drawn unless the compartments in the
framework have been designed with that in mind. For instance,
equal numbers might be admitted to the male and female categories,
but males and females are not equally numerous in the general
population, and their relative proportions vary with age. This is
known as stratified random sampling. To take a sample from a long
list, a compromise between strict theory and practicalities is known
as a systematic random sample. In this case we choose subjects a fixed
interval apart on the list, say every tenth subject, but we choose the
starting point within the first interval at random.

Unbiasedness and precision
The terms unbiased and precision have acquired special meanings

in statistics. When we say that a measurement is unbiased we mean
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that the average of a large set of unbiased measurements will be
close to the true value. When we say it is precise we mean that it is
repeatable. Repeated measurements will be close to one another,
but not necessarily close to the true value. We would like a
measurement that is both accurate and precise. Some authors
equate unbiasedness with accuracy, but this is not universal and
others use the term accuracy to mean a measurement that is
both unbiased and precise. Strike5 gives a good discussion of
the problem.

An estimate of a parameter taken from a random sample is
known to be unbiased. As the sample size increases, it gets more
precise.

Randomisation
Another use of random number tables is to randomise the

allocation of treatments to patients in a clinical trial. This ensures
that there is no bias in treatment allocation and, in the long run,
the subjects in each treatment group are comparable in both
known and unknown prognostic factors. A common method is to
use blocked randomisation. This is to ensure that at regular intervals
there are equal numbers in the two groups. Usual sizes for blocks
are two, four, six, eight, and ten. Suppose we chose a block size of
ten. A simple method using Table F (Appendix) is to choose the
first five unique digits in any row. If we chose the first row, the first
five unique digits are 3, 5, 6, 8 and 4. Thus we would allocate the
third, fourth, fifth, sixth and eighth subjects to one treatment and
the first, second, seventh, ninth, and tenth to the other. If the block
size was less than ten we would ignore digits bigger than the block
size. To allocate further subjects to treatment, we carry on along
the same row, choosing the next five unique digits for the first
treatment. In randomised controlled trials it is advisable to change
the block size from time to time to make it more difficult to guess
what the next treatment is going to be.

It is important to realise that patients in a randomised trial are
not a random sample from the population of people with the
disease in question but rather a highly selected set of eligible and
willing patients. However, randomisation ensures that in the long
run any differences in outcome in the two treatment groups are
due solely to differences in treatment.
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Variation between samples
Even if we ensure that every member of a population has a

known, and usually an equal, chance of being included in a sample,
it does not follow that a series of samples drawn from one
population and fulfilling this criterion will be identical. They will
show chance variations from one to another, and the variation may
be slight or considerable. For example, a series of samples of the
body temperature of healthy people would show very little
variation from one to another, but the variation between samples
of the systolic blood pressure would be considerable. Thus the
variation between samples depends partly on the amount of
variation in the population from which they are drawn.

Furthermore, it is a matter of common observation that a small
sample is a much less certain guide to the population from which
it was drawn than a large sample. In other words, the greater the
number of members of a population that are included in a sample
the more chance will that sample have of accurately representing
the population, provided a random process is used to construct the
sample. A consequence of this is that, if two or more samples are
drawn from a population, the larger they are the more likely they
are to resemble each other—again provided that the random
sampling technique is followed. Thus the variation between samples
depends partly also on the size of the sample. Usually, however, we
are not in a position to take a random sample; our sample is
simply those subjects available for study. This is a “convenience”
sample. For valid generalisations to be made we would like to
assert that our sample is in some way representative of the
population as a whole and for this reason the first stage in a report
is to describe the sample, say by age, sex and disease status, so that
other readers can decide if it is representative of the type of
patients they encounter.

Standard error of the mean
If we draw a series of samples and calculate the mean of the

observations in each, we have a series of means. These means
generally conform to a Normal distribution, and they often do so
even if the observations from which they were obtained do not (see
Exercise 3.3). This can be proven mathematically and is known as
the central limit theorem. The series of means, like the series
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of observations in each sample, has a standard deviation. The
standard error of the mean of one sample is an estimate of the
standard deviation that would be obtained from the means of a
large number of samples drawn from that population.

As noted above, if random samples are drawn from a population
their means will vary from one to another. The variation depends
on the variation of the population and the size of the sample. We
do not know the variation in the population so we use the variation
in the sample as an estimate of it. This is expressed in the standard
deviation. If we now divide the standard deviation by the square root
of the number of observations in the sample we have an estimate of
the standard error of the mean, SEM = SD/ n . It is important to
realise that we do not have to take repeated samples in order to
estimate the standard error: there is sufficient information within a
single sample. However, the conception is that if we were to take
repeated random samples from the population, this is how we
would expect the mean to vary, purely by chance.

A general practitioner in Yorkshire has a practice which includes
part of a town with a large printing works and some of the adjacent
sheep farming country. With her patients’ informed consent she
has been investigating whether the diastolic blood pressure of men
aged 20–44 differs between the printers and the farm workers. For
this purpose she has obtained a random sample of 72 printers and
48 farm workers and calculated the mean and standard deviations
shown in Table 3.1.

To calculate the standard errors of the two mean blood pressures
the standard deviation of each sample is divided by the square root
of the number of the observations in the sample.

These standard errors may be used to study the significance of
the difference between the two means, as described in successive
chapters.
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Printers: SEM = 4·5/       = 0·53 mmHg

Farmers: SEM = 4·2/       = 0·61 mmHg

Table 3.1 Mean diastolic blood pressures of printers and farmers.

Number Mean diastolic blood Standard deviation
pressure (mmHg) (mmHg)

Printers 72 88 4·5
Farmers 48 79 4·2
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Standard error of a proportion
or a percentage

Just as we can calculate a standard error associated with a mean, so
we can also calculate a standard error associated with a percentage
or a proportion. Here the size of the sample will affect the size of
the standard error but the amount of variation is determined by
the value of the percentage or proportion in the population itself,
and so we do not need an estimate of the standard deviation. For
example, a senior surgical registrar in a large hospital is investigating
acute appendicitis in people aged 65 and over. As a preliminary
study he examines the hospital case notes over the previous 10 years
and finds that of 120 patients in this age group with a diagnosis
confirmed at operation 73 (60·8%) were women and 47 (39·2%)
were men.

If p represents one percentage, 100 − p represents the other.
Then the standard error of each of these percentages is obtained by
(1) multiplying them together, (2) dividing the product by the
number in the sample, and (3) taking the square root:

SE percentage =

which for the appendicitis data given above is as follows:

SE percentage =

Problems with non-random samples
In general we do not have the luxury of a random sample; we

have to make do with what is available, a convenience sample. In
order to be able to make generalisations we should investigate
whether biases could have crept in, which mean that the patients
available are not typical. Common biases are:

• hospital patients are not the same as ones seen in the community;
• volunteers are not typical of non-volunteers;
• patients who return questionnaires are different from those who

do not.
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p(100 − p)
n

60·8 × 39·2
120

= 4·46
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In order to persuade the reader that the patients included are
typical it is important to give as much detail as possible at the
beginning of a report of the selection process and some demographic
data such as age, sex, social class and response rate.

Common questions
What is an acceptable response rate from a survey?

If one were taking a sample to estimate some population
parameter, then one would like as high a response rate as possible.
It is conventional to accept 65–70% as reasonable. Note, however,
that valid inferences can be made on much smaller response rates
provided no biases in response occur. If one has data on the
non-responders such as age or gender it is useful to report it with
the responders, to see if there are any obvious discrepancies.

Given measurements on a sample, what is the
difference between a standard deviation and
a standard error? 

A sample standard deviation is an estimate of the population
parameter σ; that is, it is an estimate of the variability of the
observations. Since the population is unique, it has a unique
standard deviation, which may be large or small depending on how
variable are the observations. We would not expect the sample
standard deviation to get smaller because the sample gets larger.
However, a large sample would provide a more precise estimate of
the population standard deviation σ than a small sample.

A standard error, on the other hand, is a measure of precision of
an estimate of a population parameter. A standard error is always
attached to a parameter, and one can have standard errors of any
estimate, such as mean, median, fifth centile, even the standard
error of the standard deviation. Since one would expect the precision
of the estimate to increase with the sample size, the standard error
of an estimate will decrease as the sample size increases.

When should I use a standard deviation to describe
data and when should I use a standard error?

It is a common mistake to try and use the standard error to
describe data. Usually it is done because the standard error is
smaller, and so the study appears more precise. If the purpose is to
describe the data (for example, so that one can see if the patients are
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typical) and if the data are plausibly Normal, then one should use
the standard deviation (mnemonic D for Description and D for
Deviation). If the purpose is to describe the outcome of a study,
for example to estimate the prevalence of a disease, or the mean
height of a group, then one should use a standard error (or, better,
a confidence interval; see Chapter 4) (mnemonic E for Estimate
and E for Error). Thus, in a paper one would describe the sample
in the first table (and so give, say, SD of blood pressure, and age
range) and give estimates of the effects in the second table (and so
give SEs of blood pressure differences).

Reading and reporting populations
and samples
• Report carefully how the sample was chosen. Were the subjects

patients who happened to be about? Were they consecutive
patients who satisfied certain criteria?

• Report differences in defining demographics between the sample
and the remaining population.

• List the reasons for exclusions, and compare responders and
non-responders for key variables. In questionnaire surveys,
describe how the target population was obtained, and give
numbers of people who refused to complete the questionnaire
or who were “not available”.

• When reading a paper, from the information given ask whether
the results are generalisable.

Exercises
Exercise 3.1

The mean urinary lead concentration in 140 children was
2·18 µmol/24 h, with standard deviation 0·87. What is the standard
error of the mean?

Exercise 3.2

In Table F, what is the distribution of the digits, and what are
the mean and standard deviation?

Exercise 3.3

For the first column of five digits in Table F take the mean value
of the five digits, and do this for all rows of five digits in the column.
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What would you expect a histogram of the means to look like?
What would you expect the mean and standard deviation to be?
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4 Statements of
probability and
confidence intervals

We have seen that when a set of observations has a Normal
distribution multiples of the standard deviation mark certain
limits on the scatter of the observations. For instance, 1·96 (or
approximately 2) standard deviations above and 1·96 standard
deviations below the mean (± 1·96 SD) mark the points within
which 95% of the observations lie.

Reference ranges
We noted in Chapter 1 that 140 children had a mean urinary

lead concentration of 2·18 µmol/24 h, with standard deviation
0·87. The points that include 95% of the observations are
2·18 ± (1·96 × 0·87), giving an interval of 0·48 to 3·89. One of the
children had a urinary lead concentration just over 4·0 µmol/24 h.
This observation is greater than 3·89 and so falls in the 5% beyond
the 95% probability limits. We can say that the probability of each
of such observations occurring is 5%. Another way of looking at
this is to see that if one chose one child at random out of the 140,
the chance that their urinary lead concentration exceeded 3·89,
or was less than 0·48, would be 5%. This probability is usually
expressed as a fraction of 1 rather than of 100, and written P < 0·05. 

Standard deviations thus set limits about which probability
statements can be made. Some of these are set out in Table A in
the Appendix. To use Table A to estimate the probability of finding
an observed value, say a urinary lead concentration of 4·8 µmol/24 h,
in sampling from the same population of observations as the 140
children provided, we proceed as follows. The distance of the new
observation from the mean is 4·8 − 2·18 = 2·62. How many standard
deviations does this represent? Dividing the difference by the
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standard deviation gives 2·62/0·87 = 3·01. This number is greater
than 2·576 but less than 3·291 in Table A, so the probability of
finding a deviation as large as or more extreme than this lies
between 0·01 and 0·001, which may be expressed as 0·001 <
P < 0·01. In fact Table A shows that the probability is very close to
0·0027. This probability is small, so the observation probably did
not come from the same population as the 140 other children.

To take another example, the mean diastolic blood pressure of
printers was found to be 88 mmHg and the standard deviation
4·5 mmHg. One of the printers had a diastolic blood pressure
of 100 mmHg. The mean plus or minus 1·96 times its standard
deviation gives the following two figures:

88 + (1·96 × 4·5) = 96·8 mmHg
88 − (1·96 × 4·5) = 79·2 mmHg

We can say therefore that only 1 in 20 (or 5%) of printers in the
population from which the sample is drawn would be expected to
have a diastolic blood pressure below about 79 or above about
97 mmHg. These are the 95% limits. The 99·7% limits lie three
standard deviations below and three above the mean. The blood
pressure of 100 mmHg noted in one printer thus lies beyond the
95% limit of 97 but within the 99·7% limit of 101·5 (= 88 +
(3 × 4·5)).

The 95% limits are often referred to as a reference range. For
many biological variables, they define what is regarded as the
normal (meaning standard or typical) range. Anything outside this
range is regarded as abnormal. Given a sample of disease free
subjects, an alternative method of defining a normal range would
be simply to define points that exclude 2·5% of subjects at the top
end and 2·5% of subjects at the lower end. This would give an
empirical normal range. Thus in the 140 children we might choose
to exclude the three highest and three lowest values. However, it is
much more efficient to use the mean ±2 SD, unless the data set is
quite large (say, greater than 400).

Confidence intervals
The means and their standard errors can be treated in a similar

fashion. If a series of samples are drawn and the mean of each
calculated, 95% of the means would be expected to fall within the
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range of two standard errors above and two below the mean of
these means. This common mean would be expected to lie very
close to the mean of the population. So the standard error of a
mean provides a statement of probability about the difference
between the mean of the population and the mean of the sample.

In our sample of 72 printers, the standard error of the mean 
was 0·53 mmHg. The sample mean plus or minus 1·96 times its
standard error gives the following two figures:

88 + (1·96 × 0·53) = 89·04 mmHg
88 − (1·96 × 0·53) = 86·96 mmHg

This is called the 95% confidence interval (CI), and we can say that
there is only a 5% chance that the interval 86·96 to 89·04 mmHg
excludes the mean of the population. If we took the mean plus or
minus three times its standard error, the interval would be 86·41
to 89·59. This is the 99·7% CI, and the chance of this interval
excluding the population mean is 1 in 370. Confidence intervals
provide the key to a useful device for arguing from a sample back
to the population from which it came.

The standard error for the percentage of male patients with
appendicitis, described in Chapter 3, was 4·46. This is also the
standard error of the percentage of female patients with appendicitis,
since the formula remains the same if p is replaced by 100 − p. With
this standard error we can get 95% CIs on the two percentages:

60·8 ± (1·96 × 4·46) = 52·1 to 69·5
39·2 ± (1·96 × 4·46) = 30·5 to 47·9

These CIs exclude 50%. Can we conclude that females are more
likely to get appendicitis? This is the subject of the rest of the book,
namely inference.

With small samples—say, under 30 observations—larger multiples
of the standard error are needed to set confidence limits. This
subject is discussed under the t distribution (Chapter 7).

There is much confusion over the interpretation of the probability
attached to confidence CIs. To understand it we have to resort to the
concept of repeated sampling. Imagine taking repeated samples of
the same size from the same population. For each sample calculate
a 95% CI. Since the samples are different, so are the CIs. We know
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that 95% of these intervals will include the population parameter.
However, without any additional information we cannot say which
ones! Thus with only one sample, and no other information about
the population parameter, we can say there is a 95% chance
of including the parameter in our interval. Note that this does
not mean that we would expect with 95% probability that the
mean from another sample is in this interval. In this case we are
considering differences between two sample means, which is the
subject of the next chapter.

Common questions
What is the difference between a reference
range and a confidence interval?

There is precisely the same relationship between a reference
range and a confidence interval as between the standard deviation
and the standard error. The reference range refers to individuals
and the confidence interval to estimates. It is important to realise
that samples are not unique. Different investigators taking samples
from the same population will obtain different estimates of the
population parameter, and have different 95% confidence intervals.
However, we know that for 95 of every 100 investigators the
confidence interval will include the population parameter (we just
don’t know which ones).

Reading and reporting
confidence intervals
• In general, confidence intervals are best restricted to the main

outcome of a study, which is often a contrast (that is, a difference)
between means or percentages. There is now a great emphasis on
CIs in the literature, and some authors attach CIs to every
estimate in a paper, which is not a good idea!

• The Vancouver guidelines state: “When possible, quantify
findings and present them with appropriate indicators of
measurement error or uncertainty (such as confidence
intervals)”.1

• To avoid confusion with negative numbers it is best to quote a
confidence interval as ‘a to b’ rather than ‘a−b’.
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Exercises
Exercise 4.1

A count of malaria parasites in 100 fields with a 2 mm oil
immersion lens gave a mean of 35 parasites per field, standard
deviation 11·6 (note that, although the counts are quantitative
discrete, the counts can be assumed to follow a Normal distribution
because the average is large). On counting one more field the
pathologist found 52 parasites. Does this number lie outside the
95% reference range? What is the reference range?

Exercise 4.2

What is the 95% confidence interval for the mean of the
population from which this sample count of parasites was drawn?

Reference
1 International Committee of Medical Journal Editors. Uniform requirements for

manuscripts submitted to biomedical journals. BMJ 1988;296:401–5.
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5 Differences between
means: type I and
type II errors
and power

We saw in Chapter 3 that the mean of a sample has a standard
error, and a mean that departs by more than twice its standard
error from the population mean would be expected by chance only
in about 5% of samples. Likewise, the difference between the
means of two samples has a standard error. We do not usually
know the population mean, so we may suppose that the mean of
one of our samples estimates it. The sample mean may happen to
be identical with the population mean, but it more probably lies
somewhere above or below the population mean, and there is a
95% chance that it is within 1·96 standard errors of it.

Consider now the mean of the second sample. If the sample
comes from the same population its mean will also have a 95%
chance of lying within 1·96 standard errors of the population mean
but if we do not know the population mean we have only the
means of our samples to guide us. Therefore, if we want to know
whether they are likely to have come from the same population, we
ask whether they lie within a certain interval, represented by their
standard errors, of each other.

Large-sample standard error
of difference between means

If SD1 represents the standard deviation of sample 1 and SD2 the
standard deviation of sample 2, n1 the number in sample 1 and n2

the number in sample 2, a formula denoting the standard error of
the difference between two means is:

(5.1)

( )
SD2

1

n1

SD2
2

n2

SE (diff ) = +
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The computation is straightforward. Square the standard deviation
of sample 1 and divide by the number of observations in the sample:

SD2
1/n1

Square the standard deviation of sample 2 and divide by the
number of observations in the sample:

SD2
2 /n2

Add these:

Take the square root, to give equation (5.1). This is an estimate of
the standard error of the difference between the two means which
is used when both the samples are large (more than 30 subjects).

Large-sample confidence interval
for the difference in two means

From the data in Table 3.1 the general practitioner wants to
compare the mean of the printers’ blood pressures with the mean
of the farmers’ blood pressures. The figures are set out first as in
Table 5.1 (which repeats Table 3.1).

Analysing these figures in accordance with the formula given
above, we have:

SD2
1

n1
+

SD2
2

n2

( )
4·52

72
SE (diff ) = + = 0·805 mmHg

4·22

48

√

Table 5.1 Mean diastolic blood pressures of printers and farmers.

Number Mean diastolic blood Standard deviation
pressure (mmHg) (mmHg)

Printers 72 88 4·5
Farmers 48 79 4·2



The difference between the means is 88 − 79 = 9 mmHg. For
large samples we can calculate a 95% confidence interval for the
difference in means as

9 − 1·96 × 0·805 to 9 + 1·96 × 0·805

which is 

7·42 to 10·58 mmHg

For a small sample we need to modify this procedure, as described
in Chapter 7.

Null hypothesis and type I error
In comparing the mean blood pressures of the printers and the

farmers we are testing the hypothesis that the two samples came
from the same population of blood pressures. The hypothesis that
there is no difference between the population from which the
printers’ blood pressures were drawn and the population from
which the farmers’ blood pressures were drawn is called the null 
hypothesis.

But what do we mean by “no difference”? Chance alone will
almost certainly ensure that there is some difference between the
sample means, for they are most unlikely to be identical.
Consequently, we set limits within which we shall regard the
samples as not having any significant difference. If we set the limits
at twice the standard error of the difference, and regard a mean
outside this range as coming from another population, we shall on
average be wrong about one time in 20 if the null hypothesis
is in fact true. If we do obtain a mean difference bigger than two
standard errors we are faced with two choices: either an unusual
event has happened, or the null hypothesis is incorrect. Imagine
tossing a coin five times and getting the same face each time.
This has nearly the same probability (6·3%) as obtaining a mean
difference bigger than two standard errors when the null hypothesis
is true. Do we regard it as a lucky event or suspect a biased coin?
If we are unwilling to believe in unlucky events, we reject the null
hypothesis, in this case that the coin is a fair one.
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To reject the null hypothesis when it is true is to make what is
known as a type I error. The level at which a result is declared
significant is known as the type I error rate, often denoted by α. We
try to show that a null hypothesis is unlikely, not its converse (that
it is likely), so a difference which is greater than the limits we have
set, and which we therefore regard as “significant”, makes the null
hypothesis unlikely. However, a difference within the limits we
have set, and which we therefore regard as “non-significant”, does
not make the hypothesis likely. To repeat an old adage, absence of
evidence is not evidence of absence.

A range of not more than two standard errors is often taken as
implying “no difference”, but there is nothing to stop investigators
choosing a range of three standard errors (or more) if they want to
reduce the chances of a type I error.

Testing for differences of two means
To find out whether the difference in blood pressure of printers

and farmers could have arisen by chance the general practitioner
erects the null hypothesis that there is no significant difference
between them. The question is, how many multiples of its standard
error does the difference in means difference represent? Since
the difference in means is 9 mmHg and its standard error is
0·805 mmHg, the answer is: 9/0·805 = 11·2. We usually denote the
ratio of an estimate to its standard error by z, that is, z = 11·2.
Reference to Table A in the Appendix shows that z is far beyond
the figure of 3·291 standard deviations, representing a probability
of 0·001 (or 1 in 1000). The probability of a difference of 11·2
standard errors or more occurring by chance is therefore exceedingly
low, and correspondingly the null hypothesis that these two samples
came from the same population of observations is exceedingly
unlikely. The probability is known as the P value and may be written
P << 0·001.

It is worth recapping this procedure, which is at the heart of
statistical inference. Suppose that we have samples from two
groups of subjects, and we wish to see if they could plausibly have
come from the same population. The first approach would be to
calculate the difference between two statistics (such as the means
of the two groups) and calculate the 95% confidence interval. If
the two samples were from the same population we would expect
the CI to include zero 95% of the time, and so if the CI excludes
zero we suspect that they are from a different population. The
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other approach is to compute the probability of getting the observed
value, or one that is more extreme, if the null hypothesis were correct.
This is the P value. If this is less than a specified level (usually 5%)
then the result is declared significant and the null hypothesis is
rejected. These two approaches, the estimation and hypothesis
testing approach, are complementary. Imagine if the 95% CI just
captured the value zero, what would be the P value? A moment’s
thought should convince one that it is 2·5%. This is known as a one
sided P value, because it is the probability of getting the observed
result or one bigger than it. However, the 95% CI is two sided,
because it excludes not only the 2·5% above the upper limit but also
the 2·5% below the lower limit. To support the complementarity of
the confidence interval approach and the null hypothesis testing
approach, most authorities double the one sided P value to obtain
a two sided P value (see below for the distinction between one
sided and two sided tests).

Sometimes an investigator knows a mean from a very large
number of observations and wants to compare the mean of her
sample with it. We may not know the standard deviation of the
large number of observations or the standard error of their mean
but this need not hinder the comparison if we can assume that the
standard error of the mean of the large number of observations is
near zero or at least very small in relation to the standard error of
the mean of the small sample.

This is because in equation (5.1) for calculating the standard
error of the difference between the two means, when n1 is very large
then SD2

1 /n1 becomes so small as to be negligible. The formula thus
reduces to

which is the same as that for standard error of the sample mean.
Consequently, we find the standard error of the mean of the sample
and divide it into the difference between the means.

For example, a large number of observations has shown that the
mean count of erythrocytes (measured × 1012 per litre) in men is
5·5. In a sample of 100 men a mean count of 5·35 was found, with
standard deviation 1·1. The standard error of this mean is SD/√n ,
1·1/√100 = 0·11. The difference between the two means is 5·5 −
5·35 = 0·15. This difference, divided by the standard error, gives
z = 0·15/0·11 = 1·36. This figure is well below the 5% level of 1·96
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and in fact is below the 10% level of 1·645 (see Table A). We
therefore conclude that the difference could have arisen by chance.

Alternative hypothesis and type II error
It is important to realise that when we are comparing two groups

a non-significant result does not mean that we have proved the two
samples come from the same population—it simply means that we
have failed to prove that they do not come from the same population.
When planning studies it is useful to think of what differences are
likely to arise between the two groups, or what would be clinically
worthwhile; for example, what do we expect to be the improved
benefit from a new treatment in a clinical trial? This leads to a study
hypothesis, which is a difference we would like to demonstrate.
To contrast the study hypothesis with the null hypothesis, it is
often called the alternative hypothesis. If we do not reject the null
hypothesis when in fact there is a difference between the groups, we
make what is known as a type II error. The type II error rate is
often denoted as ß. The power of a study is defined as 1 – ß and is
the probability of rejecting the null hypothesis when it is false. The
most common reason for type II errors is that the study is too small.

The relationship between type I and type II errors is shown in
Table 5.2. One has to imagine a series of cases, in some of which
the null hypothesis is true and in some of which it is false. In either
situation we carry out a significance test, which sometimes is
significant and sometimes not. 

The concept of power is only relevant when a study is being
planned (see Chapter 13 for sample size calculations). After a
study has been completed, we wish to make statements not about
hypothetical alternative hypotheses but about the data, and the
way to do this is with estimates and confidence intervals.1

Common questions
Why is the P value not the probability
that the null hypothesis is true?

A moment’s reflection should convince you that the P value
could not be the probability that the null hypothesis is true.
Suppose we got exactly the same value for the mean in two
samples (if the samples were small and the observations coarsely
rounded this would not be uncommon); the difference between the
means is zero. The probability of getting the observed result (zero)
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or a result more extreme (a result that is either positive or negative)
is unity—that is, we can be certain that we must obtain a result
which is positive, negative or zero. However, we can never be certain
that the null hypothesis is true, especially with small samples, so
clearly the statement that the P value is the probability that the
null hypothesis is true is in error. We can think of it as a measure
of the strength of evidence against the null hypothesis, but since it
is critically dependent on the sample size we should not compare
P values to argue that a difference found in one group is more
“significant” than a difference found in another.

What is the difference between a one sided
and a two sided test?

Consider a test to compare the population means of two groups
A and B. A one sided test considers as an alternative hypothesis
that the mean of A is greater than the mean of B. A two sided test
considers as an alternative that the mean of A is either greater or
less than that of B. Since the one sided test requires a stronger
assumption, it is more powerful. However, it leaves one in a
dilemma if the observed mean of A is much less than the observed
mean of B. In theory one cannot abandon the one sided alternative
hypothesis and choose a two sided one instead. Since, in most
cases, we are genuinely uncertain as to which direction to choose,
two sided tests are almost universal. The main exception may
be when one is trying to show two treatments are equivalent, for
example lumpectomy compared with radical mastectomy for
breast cancer. Then the question is whether lumpectomy is worse
for survival, and we are not worried if it might be better.

Reading and reporting P values
• If possible present a precise P value (e.g. P = 0·031) rather than

a range such as 0·02 < P < 0·05 (see Chapters 7 and 8).
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Table 5.2 Relationship between type I and type II errors.

Null hypothesis

False True

Significant Power Type I error
Test result

Not significant Type II error



• It is unnecessary to go beyond two significant figures for P
values, and for small values P < 0·001 will usually suffice.

• Some computer programs give small values as P = 0·000.
Report P < 0·001 instead.

Exercises
Exercise 5·1

In one group of 62 patients with iron deficiency anaemia the
haemoglobin level was 12·2 g/dl, standard deviation 1·8 g/dl; in
another group of 35 patients it was 10·9 g/dl, standard deviation
2·1 g/dl.

What is the standard error of the difference between the two
means, and what is the significance of the difference? What is the
difference? Give an approximate 95% confidence interval for the
difference.

Exercise 5.2

If the mean haemoglobin level in the general population is taken
as 14·4 g/dl, what is the standard error of the difference between
the mean of the first sample and the population mean and what is
the significance of this difference?

Reference
1 Altman DG, Machin D, Bryant TN, Gardner MJ (eds). Statistics with confidence,

2nd ed. London: BMJ Books, 2000.
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6 Confidence intervals
for summary
statistics of binary
data

Standard error of difference between
percentages or proportions
The surgical registrar who investigated appendicitis cases, referred
to in Chapter 3, wonders whether the percentages of men and
women in the sample differ from the percentages of all the other
men and women aged 65 and over admitted to the surgical wards
during the same period.  After excluding his sample of appendicitis
cases, so that they are not counted twice, he makes a rough estimate
of the number of patients admitted in those 10 years and finds it
to be between about 12 000 and 13 000. He selects a systematic
random sample of 640 patients, of whom 363 (56·7%) are women
and 277 (43·3%) are men.

The percentage of women in the appendicitis sample was
60·8% and differs from the percentage of women in the general
surgical sample by 60·8 − 56·7 = 4·1%. Is this difference of any
significance? In other words, could it have arisen by chance?

There are two ways of calculating the standard error of the
difference between two percentages: one is based on the null
hypothesis that the two groups come from the same population;
the other on the alternative hypothesis that they are different. For
Normally distributed variables these two are the same if the
standard deviations are assumed to be the same, but in the binary
case the standard deviations depend on the estimates of the
proportions, and so if these are different then so are the standard
deviations. Usually, however, even in the binary case, both methods
give almost the same result.



Confidence interval for a difference in
proportions or percentages

The calculation of the standard error of a difference in proportions
p1 − p2 follows the same logic as the calculation of the standard
error of two means: sum the squares of the individual standard
errors and then take the square root. It is based on the alternative
hypothesis that there is a real difference in proportions (further
discussion on this point is given in the ‘Common questions’ section
at the end of this chapter). 

Note that this is an approximate formula; the exact one would use
the population proportions rather than the sample estimates.

With our appendicitis data we have

Thus a 95% confidence interval for the difference in percentages is

4·1 − 1·96 × 4·87 to 4·1 + 1·96 × 4·87 = − 5·4 to 13·6%.

Significance test for a difference
in two proportions

For a significance test we have to use a slightly different formula,
based on the null hypothesis that both samples have a common
population proportion, estimated by p:

To obtain p we must amalgamate the two samples and calculate
the percentage of women in the two combined; 100 − p is then the

p2(100 − p2)
n2

SE (p1 − p2) = +
p1(100 − p1)

n1
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60·8 × 39·2
120

56·7 × 43·3
640

+ = 4·87

SE (diff %) = +p(100 − p)
n1

p(100 − p)
n2

√

√ 

√( )

( )

( )



percentage of men in the two combined. The numbers in each
sample are n1 and n2. We have:

Number of women in the samples: 73 + 363 = 436
Number of people in the samples: 120 + 640 = 760
Percentage of women: (436 × 100)/760 = 57·4
Percentage of men: (324 × 100)/760 = 42·6

Putting these numbers in the formula, we find the standard error
of the difference between the percentages is

This is very close to the standard error estimated under the
alternative hypothesis.

The difference between the percentage of women (and men) in
the two samples was 4·1%. To find the probability attached to this
difference we divide it by its standard error: z = 4·1/4·92 = 0·83.
From Table A in the Appendix we find that P is about 0·4 and so
the difference between the percentages in the two samples could
have been due to chance alone, as might have been expected from
the confidence interval. Note that this test gives results identical to
those obtained by the χ2 test without continuity correction
(described in Chapter 8).

Confidence interval for an odds ratio
The appendicitis data can be rewritten as a 2 × 2 table, given in

Table 6.1. As discussed in Chapter 2, the odds ratio associated
with this table is OR = ad/bc = (277 × 73)/(47 × 363) = 1·185.
This means that women are about 20% greater risk of having
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Table 6.1 Appendicitis data

Cases
Surgical (not appendicitis) Appendicitis

Males 277 (a) 47 (b)
Females 363 (c) 73 (d)

Total 640 120

57·4 × 42·6
120

57·4 × 42·6
640

+ = 4·92

√( )



appendicitis than men. It turns out to be easier to calculate the
standard error of the loge OR. The standard error is given by:1

For the appendicitis data we get

The loge of the odds ratio is 0·170. Thus a 95% confidence interval
for the loge OR is given by:

0·170 − 1·96 × 0·203 to 0·170 + 1·96 × 0·203
or − 0·229 to 0·568

To get a 95% CI for OR we need to take anti-logs (ex). Thus a
95% CI for the odds ratio is e−0·229 to e0·568. which is 0·80 to 1·77.
Note how this confidence interval is not symmetric about the odds
ratio of 1·19, in contrast to that for a difference in proportions.

If there was no difference in the proportion of males to females
for the two surgical groups, we would expect the OR to be 1.
Thus if the 95% CI excludes 1, we can say there is a significant
difference between the groups. In this case, the confidence
interval includes 1, in agreement with the earlier lack of significance
from the  statistical test.

Standard error of a total
The total number of deaths in a town from a particular disease

varies from year to year. If the population of the town or area
where they occur is fairly large, say, some thousands, and provided
that the deaths are independent of one another, the standard
error of the number of deaths from a specified cause is given
approximately by its square root, √n . Further, the standard error
of the difference between two numbers of deaths, n1 and n2, can be
taken as √(n1 + n2).
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1
a

1
b

1
c

1
d

SE (loge OR) =

SE (loge OR) = = 0·2031
277

1
47

1
363

1
73

+ + +

+ + +

√

√



This can be used to estimate the significance of a difference
between two totals by dividing the difference by its standard error:

(6.1)

It is important to note that the deaths must be independently
caused; for example, they must not be the result of an epidemic
such as influenza. The reports of the deaths must likewise be
independent; for example, the criteria for diagnosis must be
consistent from year to year and not suddenly change in accordance
with a new fashion or test, and the population at risk must be the
same size over the period of study.

In spite of its limitations this method has its uses. For instance,
in Carlisle the number of deaths from ischaemic heart disease for
one year was 276. Is this significantly higher than the total for the
previous year, which was 246? The difference is 30. The standard
error of the difference is √(276 + 246) = 22·8. We then take
z = 30/22·8 = 1·313. This is clearly much less than 1·96 times the
standard error at the 5% level of probability. Reference to Table A
shows that P = 0·2. The difference could therefore easily be a
chance fluctuation.

This method should be regarded as giving no more than
approximate but useful guidance, and is unlikely to be valid over a
period of more than very few years owing to changes in diagnostic
techniques. An extension of it to the study of paired alternatives 
follows.

Paired alternatives
Sometimes it is possible to record the results of treatment or

some sort of test or investigation as one of two alternatives. For
instance, two treatments or tests might be carried out on pairs
obtained by matching individuals chosen by random sampling,
or the pairs might consist of successive treatments of the same
individual (see Chapter 7 for a comparison of pairs by the t test).
The result might then be recorded as “responded or did not
respond”, “improved or did not improve”, “positive or negative”,
and so on. This type of study yields results that can be set out as
shown in Table 6.2.
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n1 − n2

(n1 + n2)
z = √



The significance of the results can then be simply tested by
McNemar’s test in the following way. Ignore the first and fourth 
rows, and examine the second and third rows. Let the larger
number of pairs in either row be called n1 and the smaller number
of pairs in either row be n2. We may then use formula (6.1) to
obtain the result, z. This is approximately Normally distributed
under the null hypothesis, and its probability can be read from
Table A.

However, in practice, the fairly small numbers that form the
subject of this type of investigation make a correction advisable.
We therefore diminish the difference between n1 and n2 by using
the following formula:

(6.2)

where the vertical lines mean “take the absolute value”. Again, the
result is Normally distributed, and its probability can be read from
Table A.

As for the unpaired case, there is a slightly different formula for
the standard error used to calculate the confidence interval.1

Suppose N is the total number of pairs. Then

For example, a registrar in the gastroenterological unit of a large
hospital in an industrial city sees a considerable number of patients
with severe recurrent aphthous ulcer of the mouth. Claims have been
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Table 6.2 Layout for paired data.

Member of pair receiving Member of pair receiving
treatment A treatment B

Responded Responded
Responded Did not respond 
Did not respond Responded 
Did not respond Did not respond

|n1 − n2| − 1

(n1 + n2)
z =

SE (diff ) = .1
N

(n1 − n2)
2

N
n1 + n2 −

√ −

√( )



made that a recently introduced preparation stops the pain of these
ulcers and promotes quicker healing than existing preparations.

Over a period of 6 months the registrar selected every patient
with this disorder and paired them off as far as possible by reference
to age, sex and frequency of ulceration. Finally she had 108 patients
in 54 pairs. To one member of each pair, chosen by the toss of a
coin, she gave treatment A, which she and her colleagues in the unit
had hitherto regarded as the best; to the other member she gave the
new treatment, B. Both forms of treatment are local applications,
and they cannot be made to look alike. Consequently, to avoid bias
in the assessment of the results a colleague recorded the results of
treatment without knowing which patient in each pair had which
treatment. The results are shown in Table 6.3.

Here n1 = 23, n2 = 10. Entering these values in formula (6.2), we
obtain

The probability value associated with 2·089 is about 0·04
(Table A). Without the continuity correction we obtain z = 2.26
and P about 0.025. Therefore we may conclude that treatment A
gave significantly better results than treatment B. The standard
error used to calculate the confidence interval is:

= 0·101

The observed difference in proportions is

− = 0·241
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(23 − 10) − 1 12

(23 + 10)
z = = = 2·089.

√33

23
54

10
54

SE (diff ) = ×1
54

(23 + 10) − (23 − 10)2

54

1
54

× 169
54

33 −=

√ −
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The 95% confidence interval for the difference in proportions is
therefore

0·241 − 1·96 × 0·101 to 0·241 + 1·96 × 0·101 = 0·042 to 0·439

Although this does not include zero, the confidence interval is
quite wide, reflecting uncertainty as to the true difference because
the sample size is small. An exact method is also available.1

Common questions
Why is the standard error used for calculating a
confidence interval for the difference in two
proportions different from the standard error
used for calculating the significance?

For nominal variables the standard deviation is not independent
of the mean. If we suppose that a nominal variable simply takes the
value 0 or 1, then the mean is simply the proportion of 1s and the
standard deviation is directly dependent on the mean, being largest
when the mean is 0·5. The null and alternative hypotheses are
hypotheses about means, either that they are the same (null) or
different (alternative). Thus for nominal variables the standard
deviations (and thus the standard errors) will also be different for
the null and alternative hypotheses. For a confidence interval,
the alternative hypothesis is assumed to be true, whereas for a
significance test the null hypothesis is assumed to be true. In general
the difference in the values of the two methods of calculating the
standard errors is likely to be small, and use of either would lead
to the same inferences. The reason why this is mentioned here is
that there is a close connection between the test of significance
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Table 6.3 Results of treating aphthous ulcer in 54 pairs of patients

Member of pair receiving Member of pair receiving Pairs of patients
treatment A treatment B

Responded Responded 16
Responded Did not respond 23
Did not respond Responded 10
Did not respond Did not respond 5
Total 54



described in this chapter and the χ2 test described in Chapter 8.
The difference in the arithmetic for the significance test, and that for
calculating the confidence interval, could lead some readers to believe
that they are unrelated, whereas in fact they are complementary.
The problem does not arise with continuous variables, where the
standard deviation is usually assumed independent of the mean,
and is also assumed to be the same value under both the null and
alternative hypotheses.

It is worth pointing out that the formula for calculating the
standard error of an estimate is not necessarily unique; it depends
on underlying assumptions, and so different assumptions or study
designs will lead to different estimates for standard errors for data
sets that might be numerically identical.

Exercises
Exercise 6.1

In an obstetric hospital 17·8% of 320 babies were delivered by
forceps in 1975. What is the standard error of this percentage? In
another hospital in the same region 21·2% of 185 babies were
delivered by forceps. What is the standard error of the difference
between the percentages at this hospital and the first? What is the
difference between these percentages of forceps delivery with a
95% confidence interval and what is its significance?

Exercise 6.2

Calculate the difference in proportions (also know as the absolute
risk reduction—see Chapter 2) and a 95% confidence interval for
the difference in proportions for the data given in Table 2.4.

Exercise 6.3

A dermatologist tested a new topical application for the treatment
of psoriasis on 48 patients. He applied it to the lesions on one
part of the patient’s body and what he considered to be the best
traditional remedy to the lesions on another but comparable part
of the body, the choice of area being made by the toss of a coin. In
three patients both areas of psoriasis responded; in 28 patients the
disease responded to the traditional remedy but hardly or not at all
to the new one; in 13 it responded to the new one but hardly or
not at all to the traditional remedy; and in four cases neither
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remedy caused an appreciable response. Did either remedy cause
a significantly better response than the other?

Note in this exercise that the purpose of the study would be
to determine which treatment to try first, in the absence of any
further information. Clearly, if the first treatment fails, there is
little lost in trying the other.

Exercise 6.4

For the data in Table 2.5 calculate the odds ratio and a 95%
confidence interval.

Reference
1 Altman DG, Machin D, Bryant TN, Gardner MJ (eds). Statistics with confidence,

2nd ed. London: BMJ Publishing Group, 2000.
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7 The t tests

Previously we have considered how to test the null hypothesis
that there is no difference between the mean of a sample and the
population mean, and no difference between the means of two
samples. We obtained the difference between the means by
subtraction, and then divided this difference by the standard error
of the difference. If the difference is 1·96 times its standard error
or more it is likely to occur by chance with a frequency of only 1
in 20, or less.

With small samples, where more chance variation must be allowed
for, these ratios are not entirely accurate because the uncertainty in
estimating the standard error has been ignored. Some modification
of the procedure of dividing the difference by its standard error is
needed, and the technique to use is the t test. Its foundations were
laid by WS Gosset, writing under the pseudonym “Student”, so
that it is sometimes known as Student’s t test. The procedure
does not differ greatly from the one used for large samples, but is
preferable when the number of observations is less than 60, and
certainly when they amount to 30 or less.

The application of the t distribution to the following four types
of problem will now be considered:

1 The calculation of a confidence interval for a sample mean.
2 The mean and standard deviation of a sample are calculated

and a value is postulated  for the mean of the population. How
significantly does the sample mean differ from the postulated
population mean?

3 The means and standard deviations of two samples are
calculated. Could both samples have been taken from the same
population?
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4 Paired observations are made on two samples (or in succession
on one sample). What is the significance of the difference
between the means of the two sets of observations?

In each case the problem is essentially the same—namely, to
establish multiples of standard errors to which probabilities can be
attached. These multiples are the number of times a difference can
be divided by its standard error. We have seen that with large
samples 1·96 times the standard error has a probability of 5% or
less, and 2·576 times the standard error a probability of 1% or less
(see Table A in the Appendix). With small samples these multiples
are larger, and the smaller the sample the larger they become.

Confidence interval for the
mean from a small sample 

A rare congenital disease, Everley’s syndrome, generally causes
a reduction in concentration of blood sodium. This is thought to
provide a useful diagnostic sign as well as a clue to the efficacy of
treatment. Little is known about the subject, but the director of a
dermatological department in a London teaching hospital is
known to be interested in the disease and has seen more cases than
anyone else. Even so, he has seen only 18. The patients were all
aged between 20 and 44.

The mean blood sodium concentration of these 18 cases was
115 mmol/l, with standard deviation 12 mmol/l. Assuming that
blood sodium concentration is Normally distributed, what is the 95%
confidence interval within which the mean of the total population of
such cases may be expected to lie?

The data are set out as follows:

Number of observations 18
Mean blood sodium

concentration 115 mmol/1
Standard deviation 12 mmol/1
Standard error of mean SD/√n = 12/√18 = 2·83 mmol/1

To find the 95% CI above and below the mean we now have to
find a multiple of the standard error. In large samples we have seen
that the multiple is 1·96 (Chapter 4). For small samples we use the
table of t given in Table B. As the sample becomes smaller t
becomes larger for any particular level of probability. Conversely, as



the sample becomes larger t becomes smaller and approaches the
values given in Table A, reaching them for infinitely large samples.

Since the size of the sample influences the value of t, the size of
the sample is taken into account in relating the value of t to
probabilities in the table. Some useful parts of the full t table
appear in Table B. The left hand column is headed d.f. for “degrees
of freedom”. The use of these was noted in the calculation of the
standard deviation (Chapter 2). In practice, the degrees of freedom
amount in these circumstances to one less than the number of
observations in the sample. With these data we have 18 − 1 = 17 d.f.
This is because only 17 observations plus the total number of
observations are needed to specify the sample, the 18th being
determined by subtraction.

To find the number by which we must multiply the standard
error to give the 95% CI we enter Table B at 17 in the left hand
column and read across to the column headed 0·05 to discover the
number 2·110. The 95% CIs of the mean are now set as follows:

mean − 2·110 SE to mean + 2·110 SE

which gives us:

115 − (2·110 × 2·83) to 115 + 2·110 × 2·83
= 109·03 to 120·97 mmol/l

We may then say, with a 95% chance of being correct, that the
range 109·03 to 120·97 mmol/l includes the population mean.
Likewise, from Table B, the 99% confidence interval of the mean
is as follows:

mean − 2·898 SE to mean + 2·898 SE

which gives:

115 − (2·898 × 2·83) to 115 + (2·898 × 2·83)
= 106·80 to 123·20 mmol/l

Difference of sample mean from
population mean (one sample t test)

Estimations of plasma calcium concentration in the 18 patients
with Everley’s syndrome gave a mean of 3·2 mmol/l, with standard
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deviation 1·1. Previous experience from a number of investigations
and published reports had shown that the mean was commonly
close to 2·5 mmol/l in healthy people aged 20–44, the age range of
the patients. Is the mean in these patients abnormally high?

We make the following assumptions:

• The data are representative of people with Everley’s syndrome
(in this case we have a convenience sample).

• The data are quantitative and plausibly Normally distributed.
• The data are independent of each other. This assumption is

most important. In general, repeated measurements on the
same individual are not independent. If we had 18 measures of
plasma calcium on 15 patients, then we would have only 15
independent observations.

We set the figures out as follows:
Mean of general population, µ 2·5 mmol/l
Mean of sample, x− 3·2 mmol/l
Standard deviation of sample,

SD 1·1 mmol/l
Standard error of sample mean,

SD/√n = 1·1/√18 0·26 mmo1/l
Difference between means

µ − x− = 2·5 − 3·2 −0·7 mmol/l
t = difference between means divided by standard
error of sample mean

Degrees of freedom, n − 1 = 18 − 1 = 17

Ignoring the sign of the t value, and entering Table B at 17 degrees
of freedom, we find that 2·69 comes between probability values of
0·02 and 0·01 (the precise value, from Excel, is P = 0·015). It is
therefore unlikely that the sample with mean 3·2 came from the
population with mean 2·5, and we may conclude that the sample
mean is, at least statistically, unusually high. Whether it should be
regarded clinically as abnormally high is something that needs to
be considered separately by the physician in charge of that case.
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µ − x–

SD/√n

− 0·7

0·26
t =              = = −2·69



Difference between means of two samples
Here we apply a modified procedure for finding the standard

error of the difference between two means and testing the size of
the difference by this standard error (see Chapter 5 for large
samples). For large samples we used the standard deviation of each
sample, computed separately, to calculate the standard error of the
difference between the means. For small samples we calculate a
combined standard deviation for the two samples. The following
example illustrates the procedure.

The addition of bran to the diet has been reported to benefit
patients with diverticulosis. Several different bran preparations are
available, and a clinician wants to test the efficacy of two of them
on patients, since favourable claims have been made for each.
Among the consequences of administering bran that require testing
is the transit time through the alimentary canal. Does it differ in
the two groups of patients taking these two preparations?

The null hypothesis is that the two groups come from the same
population. By random allocation the clinician selects two groups
of patients aged 40–64 with diverticulosis of comparable severity.
Sample 1 contains 15 patients who are given treatment A, and
sample 2 contains 12 patients who are given treatment B. The
transit times of food through the gut are measured by a standard
technique with marked pellets and the results are recorded, in
order of increasing time, in Table 7.1.

The following assumptions are made:

• The two samples come from distributions that may differ in
their mean value, but not in their standard deviation.

• The observations are independent of each other.
• The data are quantitative and plausibly Normally distributed.

(Note in the case of a randomised trial this last assumption is
less critical: see ‘Common questions’.)

The data are shown in Figure 7.1. The assumptions of
approximate Normality and equality of variance are satisfied. The
design suggests that the observations are indeed independent.
Since it is possible for the difference in mean transit times for
treatments to be positive or negative, we will employ a two
sided test. With treatment A the mean transit time was 68·40 h
and with treatment B 83·42 h. What is the significance of the
difference, 15·02 h?
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Table 7.1 Transit times of marker pellets through the
alimentary canal of patients with diverticulosis on two
types of treatment: unpaired comparison.

Transit times (h)

Sample 1 Sample 2
(treatment A) (treatment B)

44 52
51 64
52 68
55 74
60 79
62 83
66 84
68 88
69 95
71 97
71 101
76 116
82
91

108

Total 1026 1001
Mean 68·40 83·42
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Figure 7.1 Trasnsit times for two bran preparations.



The procedure is as follows. Obtain the standard deviation in
sample 1, s1, and the standard deviation in sample 2, s2. Multiply
the square of the standard deviation of sample 1 by the degrees of
freedom, which is the number of subjects minus one:

(n1 − 1)s 2
1

Repeat for sample 2:

(n2 − 1)s 2
2

Add the two together and divide by the total degrees of freedom to
give the pooled variance:

The standard error of the difference between the means is

which can also be written

When the difference between the means is divided by this
standard error the result is t. Thus,

The table of the t distribution (Table B), which gives two sided p
values, is entered at (n − 1) + (n2 − 1) degrees of freedom.

( )√ 

√ 
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s2
p =

(n1 − 1)s 2
1  + (n2 − 1)s 2

2

n1 + n2 − 2

SE(x–1 − x–2) =          + 
s2

p

n1

s2
p

n2

SE(x–1 − x–2) = sp + 1
n1

1
n2

√ 
+

s2
p

n1

s2
p

n2

t =   
(x–1 − x–2)

( )

( )



For the transit times of Table 7.1:

Treatment A Treatment B
n1 = 15 n2 = 12
x1 = 68·40 x2 = 83·42
s1 = 16·474 s2 = 17·635

Table B shows that at (15 − 1) + (12 − 1) = 25 degrees of freedom,
t = 2·282 lies between 2·060 (P = 0·05) and 2·485 (P = 0·02) 
(precise Excel value 0·031). This degree of probability is smaller
than the conventional level of 5%. The null hypothesis that there
is no difference between the means is therefore somewhat unlikely.

A 95% confidence interval is given by

x–1 − x–2 ± t(n1+ n2 − 2)SE

This becomes

83·42 − 68·40 ± 2·06 × 6·582
15·02 − 13·56 to 15·02 + 13·56 

or 1·46 to 28·58 h

Unequal standard deviations
If the standard deviations in the two groups are markedly different,

for example if the ratio of the larger to the smaller is greater than 2,
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14 × 271·3927 + 11 × 310·9932
(15 − 1) + (12 − 1)

s2
p =                                                   =288·82

SE(x–1 − x–2) =  (288·82/15 + 288·82/12)

=   (288·82(1/15 + 1/12)

= 6·582

√ 

√ 

83·42 − 68·40

6·582
t = = 2·282



then one of the assumptions of the t test (that the two samples
come from populations with the same standard deviation) is
unlikely to hold. An approximate test, due to Satterthwaite and
described by Armitage and Berry,1 which allows for unequal
standard deviations, is described below. Another version of this
test is known as Welsh’s test.

Rather than use the pooled estimate of variance, compute

This is the large-sample estimate given in equation (5.1), and is
analogous to calculating the standard error of the difference in
two proportions under the alternative hypothesis as described in
Chapter 6.

We now compute

We then test this using a t statistic, in which the degrees of freedom
are:

Although this may look very complicated, it can be evaluated very
easily on a calculator without having to write down intermediate
steps. It can produce a value for the degrees of freedom which is not
an integer, and so not available in the tables. In this case one should
round to the nearest integer. Many statistical packages now carry
out this test as the default, and to get the equal variances t statistic
one has to specifically ask for it. The unequal variances t test tends
to be less powerful than the usual t test if the variances are in fact
the same, since it uses fewer assumptions. However, it should not
be used indiscriminately because, if the standard deviations are
different, how can we interpret a non-significant difference in means,
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(s2
1 /n1 + s2

2 /n2)
2

[(s2
1 / n1)

2/(n1 − 1)] + [(s2
2 / n2)

2/(n2 − 1)] 
d.f. =

(x–1 − x–2)d =
SE(x–1 − x–2)

SE(x–1 − x–2) =           × 
s2

1

n1

s2
2

n2

( )√ 



for example? Often a better strategy is to try a data transformation,
such as taking logarithms as described in Chapter 2. Transformations
that render distributions closer to Normality often also make the
standard deviations similar. If a log transformation is successful, use
the usual t test on the logged data.

For the data in Table 7.1, we find that SE = 6·632, d = 2·26 and
d.f. = 22·9, or approximately 23. The tabulated values for 2%
and 5% from Table B are 2·069 and 2·500, and so this gives
0·02 < P < 0·05 (precise Excel value 0·034), very close to that
given by the equal variance test. This might be expected, because
the standard deviations in the original data set are very similar, and
so using the unequal variances t test gives very similar results to the
t test which assumes equal variances. It can also be shown that if
the numbers of observations in each group are similar, the usual
t test is quite robust.

Difference between means of paired
samples (paired t test)

When the effects of two alternative treatments or experiments
are compared, for example in crossover trials, randomised trials
in which randomisation is between matched pairs, or matched
case–control studies (see Chapter 13), it is sometimes possible to
make comparisons in pairs. Matching controls for the matched
variables can lead to a more powerful study.

The test is derived from the single sample t test, using the
following assumptions:

• The data are quantitative.
• The distribution of the differences (not the original data), is

plausibly Normal.
• The differences are independent of each other.

The first case to consider is when each member of the sample
acts as his own control. Whether treatment A or treatment B is
given first or second to each member of the sample should be
determined by the use of a table of random numbers (Table F). In
this way any effect of one treatment on the other, even indirectly
through the patient’s attitude to treatment for instance, can be
minimised. Occasionally it is possible to give both treatments
simultaneously, as in the treatment of a skin disease by applying a
remedy to the skin on opposite sides of the body.
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Let us use as an example the studies of bran in the treatment of
diverticulosis discussed earlier. The clinician wonders whether
transit time would be shorter if bran is given in the same dosage
in three meals during the day (treatment A) or in one meal
(treatment B). A random sample of patients with disease of
comparable severity and aged 20–44 is chosen and the two
treatments administered on two successive occasions, the order of
the treatments also being determined from the table of random
numbers. The alimentary transit times and the differences for each
pair of treatments are set out in Table 7.2.

In calculating t on the paired observations we work with the
difference, d, between the members of each pair. Our first task is
to find the mean of the differences between the observations and
then the standard error of the mean, proceeding as follows. Find
the mean of the differences, d–. Find the standard deviation of the
differences, SD. Calculate the standard error of the mean:

To calculate t, divide the mean of the differences by the standard
error of the mean
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Table 7.2 Transit times of marker pellets through the alimentary canal of
12 patients with diverticulosis on two types of treatment:

Transit times (h)

Treatment Treatment Difference
Patient A B A−B

1 63 55 8
2 54 62 −8
3 79 108 −29
4 68 77 −9
5 87 83 4
6 84 78 6
7 92 79 13
8 57 94 −37
9 66 69 −3

10 53 66 −13
11 76 72 4
12 63 77 −14

Total 842 920 −78
Mean 70·17 76·67 −6·5

SE(d–) = SD/√n .

d
–

SE(d
–

)
t =



The table of the t distribution is entered at n − 1 degrees of freedom
(number of pairs minus 1). 

For the data from Table 7.2 we have

Entering Table B at 11 degrees of freedom (n − 1) and ignoring
the minus sign, we find that this value lies between 0·697 and
1·796. Reading off the probability value, we see that 0·1< P < 0·5
(precise Excel value 0·165). The null hypothesis is that there is no
difference between the mean transit times on these two forms of
treatment. From our calculations, it is not disproved. However, this
does not mean that the two treatments are equivalent. To help us
decide this we calculate the confidence interval.

A 95% CI for the mean difference is given by

d
– ± tn − 1SD.

In this case t11 at P = 0·05 is 2·201 (Table B) and so the 95% 
CI is:

− 6·5 − 2·201 × 4·37 to − 6·5 + 2·201 × 4·37 h
= − 16·1 to 3·1 h.

This interval is quite wide, so that, even though it contains zero,
we cannot really conclude that the two preparations are equivalent,
and should look to a larger study.

The second case of a paired comparison to consider is when
two samples are chosen and each member of sample 1 is paired
with one member of sample 2, as in a matched case–control study.
As the aim is to test the difference, if any, between two types
of treatment, the choice of members for each pair is designed to
make them as alike as possible. The more alike they are, the more
apparent will be any differences due to treatment, because they
will not be confused with differences in the results caused by
disparities between members of the pair. The likeness within the
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d
– = − 6·5

SD = 15·1

SE (d
–

) = 4·37

t = − 6·5/4·37 = − 1·487



pairs applies to attributes relating to the study in question. For
instance, in a test for a drug reducing blood pressure the colour of
the patients’ eyes would probably be irrelevant, but their resting
diastolic blood pressure could well provide a basis for selecting the
pairs. Another (perhaps related) basis is the prognosis for the
disease in patients: in general, patients with a similar prognosis are
best paired. Whatever criteria are chosen, it is essential that the
pairs are constructed before the treatment is given, for the pairing
must be uninfluenced by knowledge of the effects of treatment.

Further methods
Suppose we had a clinical trial with more than two treatments.

It is not valid to compare each treatment with the other treatments
using t tests because the overall type I error rate α will be bigger
than the conventional level set for each individual test. A method
of controlling this is to use a one way analysis of variance.1,2

Common questions
Should I test my data for Normality
before using the t test?

It would seem logical that, because the t test assumes Normality,
one should test for Normality first. The problem is that the test
for Normality is dependent on the sample size. With a small
sample a non-significant result does not mean that the data come
from a Normal distribution. On the other hand, with a large
sample, a significant result does not mean that we could not use
the t test, because the t test is robust to moderate departures from
Normality—that is, the P value obtained can be validly interpreted.
There is something illogical about using one significance test
conditional on the results of another significance test. In general it
is a matter of knowing and looking at the data. One can “eyeball”
the data and if the distributions are not extremely skewed, and
particularly if (for the two sample t test) the numbers of observations
are similar in the two groups, then the t test will be valid. The main
problem is often that outliers will inflate the standard deviations
and render the test less sensitive. Also, it is not generally appreciated
that if the data originate from a randomised controlled trial, then
the process of randomisation will ensure the validity of the t test,
irrespective of the original distribution of the data.

STATISTICS AT SQUARE ONE

74



Should I test for equality of the standard
deviations before using the usual t test?

The same argument prevails here as for the previous question
about Normality. The test for equality of variances is dependent
on the sample size. A rule of thumb is that if the ratio of the larger
to the smaller standard deviation is greater than 2, then the
unequal variance test should be used. In view of the fact that
when the variances are similar, the equal variance and unequal
variance t test tend to agree, there is a good argument for always
doing the unequal variance test. With a computer one can easily
do both the equal and the unequal variance t test and see if the
answers differ.

Why should I use a paired test if my data
are paired? What happens if I don’t?

Pairing provides information about an experiment, and the more
information that can be provided in the analysis the more sensitive
the test. One of the major sources of variability is that between
subjects. By repeating measures within subjects, each subject acts
as his or her own control, and the between subjects variability is
removed. In general this means that if there is a true difference
between the pairs the paired test is more likely to pick it up: it is
more powerful. When the pairs are generated by matching the
matching criteria may not be important. In this case, the paired
and unpaired tests should give similar results.

Reading and reporting t tests
• Lack of Normality is not too much of a worry because, as stated

earlier, the t test is remarkably robust to lack of Normality,
particularly if the numbers of data points are similar in the
two groups. However, one should check that the data are
independent, and that the variances are similar in the two
groups.

• Always report the t statistic, its degrees of freedom and P value.
Also give the estimate and confidence interval. Thus, the
transit time study for a two sample t test would be reported as

t = 2·28, d.f. = 25, P = 0·031, difference in means 15·02 h,
95% CI 1·46 to 28·58 h
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Exercises
Exercise 7.1

In 22 patients with an unusual liver disease the plasma alkaline
phosphatase was found by a certain laboratory to have a mean
value of 39 King–Armstrong units, standard deviation 3·4 units.
What is the 95% confidence interval within which the mean of
the population of such cases whose specimens come to the same
laboratory may be expected to lie?

Exercise 7.2

In the 18 patients with Everley’s syndrome the mean level of
plasma phosphate was 1·7 mmol/l, standard deviation 0·8. If the
mean level in the general population is taken as 1·2 mmol/l, what
is the significance of the difference between that mean and the
mean of these 18 patients?

Exercise 7.3

In two wards for elderly women in a geriatric hospital the
following levels of haemoglobin (g/dl) were found:

Ward A: 12·2, 11·1, 14·0, 11·3, 10·8, 12·5, 12·2, 11·9,
13·6, 12·7, 13·4, 13·7

Ward B: 11·9, 10·7, 12·3, 13·9, 11·1, 11·2, 13·3, 11·4,
12·0, 11·1

What is the difference between the mean levels in the two wards,
and what is its significance? What is the 95% confidence interval
for the difference in treatments?

Exercise 7.4

A new treatment for varicose ulcer is compared with a standard
treatment on 10 matched pairs of patients, where treatment
between pairs is decided using random numbers. The outcome is
the number of days from start of treatment to healing of ulcer. One
doctor is responsible for treatment and a second doctor assesses
healing without knowing which treatment each patient had. The
following treatment times (in days) were recorded.
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Standard treatment: 35, 104, 27, 53, 72, 64, 97, 121,
86, 41

New treatment: 27, 52, 46, 33, 37, 82, 51, 92,
68, 62

What are the mean differences in the healing time, the value of
t, the number of degrees of freedom, and the probability? What is
the 95% confidence interval for the difference?

References
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8 The χχ2 tests

The distribution of a categorical variable in a sample often needs to
be compared with the distribution of a categorical variable in another
sample. For example, over a period of 2 years a psychiatrist has
classified by socioeconomic class the women aged 20–64 admitted
to her unit suffering from self poisoning—sample A. At the same
time she has likewise classified the women of similar age admitted to
a gastroenterological unit in the same hospital—sample B. She has
employed the Registrar General’s five socioeconomic classes, and
generally classified the women by reference to their father’s or
husband’s occupation. The results are set out in Table 8.1.

The psychiatrist wants to investigate whether the distribution
of the patients by social class differed in these two units. She
therefore erects the null hypothesis that there is no difference
between the two distributions. This is what is tested by the chi
squared (χ2) test (pronounced with a hard ch to rhyme with “sky”).
By default, all χ2 tests are two sided.

It is important to emphasise here that χ2 tests may be carried out
for this purpose only on the actual numbers of occurrences, not on
percentages, proportions, means of observations, or other derived
statistics. Note, we distinguish here the Greek (χ2) for the test and
the distribution and the Latin (X 2) for the calculated statistic,
which is what is obtained from the test.

The χ2 test is carried out in the following steps. For each
observed number (O) in the table find an “expected” number (E);
this procedure is discussed below. Subtract each expected number
from each observed number:

O − E



THE χ2 TESTS

79

Square the difference:

(O − E)2.

Divide the squares so obtained for each cell of the table by the
expected number for that cell:

(O − E)2/E.

X 2 is the sum of the (O − Ε)2/E values.
To calculate the expected number for each cell of the table

consider the null hypothesis, which in this case is that the numbers
in each cell are proportionately the same in sample A as they are in
sample B. We therefore construct a parallel table in which the
proportions are exactly the same for both samples. This has been
done in columns (2) and (3) of Table 8.2. The proportions are
obtained from the totals column in Table 8.1 and are applied to
the totals row. For instance, in Table 8.2, column (2), 11·80 =
(22/289) × 155; 24·67 = (46/289) × 155; in column (3) 10·20 =
(22/289) × 134; 21·33 = (46/289) × 134 and so on.

Thus by simple proportions from the totals we find an expected
number to match each observed number. The sum of the
expected numbers for each sample must equal the sum of the
observed numbers for each sample, which is a useful check. We
now subtract each expected number from its corresponding
observed number. The results are given in columns (4) and (5) of
Table 8.2. Here two points may be noted.

Table 8.1 Distribution by socioeconomic class of patients admitted to
self poisoning (sample A) and gastroenterological (sample B) units.

Samples
Socioeconomic Proportion in

class A B Total group A

a b n=a+b p=a/n
I 17 5 22 0·77

II 25 21 46 0·54
III 39 34 73 0·53
IV 42 49 91 0·46
V 32 25 57 0·56

Total 155 134 289



1. The sum of these differences always equals zero in each column.
2. Each difference for sample A is matched by the same figure,

but with the opposite sign, for sample B.

Again these are useful checks.
The figures in columns (4) and (5) are then each squared and

divided by the corresponding expected numbers in columns (2)
and (3). The results are given in columns (6) and (7). Finally these
results, (O − E)2/E, are summed to give X 2.

A helpful technical procedure in calculating the expected numbers
may be noted here. Most electronic calculators allow successive
multiplication by a constant multiplier by a short cut of some kind.
To calculate the expected numbers a constant multiplier for each
sample is obtained by dividing the total of the sample by the grand
total for both samples. In Table 8.1 for sample A this is 155/289 =
0·5363. This fraction is then successively multiplied by 22, 46, 73,
91 and 57. For sample B the fraction is 134/289 = 0·4636. This too
is successively multiplied by 22, 46, 73, 91 and 57. The results are
shown in Table 8.2, columns (2) and (3).

Having obtained a value for X 2 =
∑

[(Ο − Ε)2/Ε] we look up in a
table of χ2 distribution the probability attached to it (Table C in the
Appendix). Just as with the t table, we must enter this table at a
certain number of degrees of freedom. To ascertain these requires
some care.

When a comparison is made between one sample and another,
as in Table 8.1, a simple rule is that the degrees of freedom equal
(number of columns minus one) × (number of rows minus one),
not counting the row and column containing the totals. For the
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Table 8.2 Calculation of the χ2 test on figures in Table 8.1.

Expected numbers O − E (O − E)2/E

Class A B A B A B
(1) (2) (3) (4) (5) (6) (7)

I 11·80 10·20 5·20 − 5·20 2·292 2·651
II 24·67 21·33 0·33 − 0·33 0·004 0·005

III 39·15 33·85 − 0·15 0·15 0·001 0·001
IV 48·81 42·19 − 6·81 6·81 0·950 1·099
V 30·57 26·43 1·43 − 1·43 0·067 0·077

Total 155·00 134·00 0 0 3·314 3·833

X 2 = 3·314 + 3·833 = 7·147. d.f. = 4. 0·10 < P < 0·50 (precise P = 0·13).



data in Table 8.1 this gives (2 − 1) × (5 − 1) = 4. Another way of
looking at this is to ask for the minimum number of figures that
must be supplied in Table 8.1, in addition to all the totals, to allow
us to complete the whole table. Four numbers disposed anyhow in
samples A and B, provided they are in separate rows, will suffice.

Entering Table C at four degrees of freedom and reading along
the row, we find that the value of X 2 (7·147) lies between 3·357
and 7·779. The corresponding probability is: 0·10 < P < 0·50 (precise
P = 0·13). This is well above the conventionally significant level
of 0·05, so the null hypothesis is not disproved. It is therefore
quite conceivable that in the distribution of the patients between
socioeconomic classes the population from which sample A was
drawn was the same as the population from which sample B was
drawn.

Quick method
The above method of calculating X 2 illustrates the nature of the

statistic clearly and is often used in practice. A quicker method,
similar to the quick method for calculating the standard deviation,
is particularly suitable for use with electronic calculators.1

The data are set out as in Table 8.1. Take the left hand column
of figures (sample A) and call each observation a. Their total,
which is 155, is then 

∑
a.

Let p be the proportion formed when each observation a is
divided by the corresponding figure in the total column. Thus here
p in turn equals 17/22, 25/46, … , 32/57.

Let p− be the proportion formed when the total of the observations
in the left hand column, 

∑
a, is divided by the total of all the

observations. Here p− = 155/289. Let q− = 1 − p−, which is the same
as 134/289. Then

Fourfold tables
A special form of the χ2 test is particularly common in practice

and quick to calculate. It is applicable when the results of an
investigation can be set out in a “fourfold table” or “2 × 2
contingency table”.
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X 2 =
∑

pa − p−
∑

a
pq—



For example, the practitioner whose data we displayed in Table 3.1
believed that the wives of the printers and farmers should be
encouraged to breastfeed their babies. She has records for her
practice going back over 10 years, in which she has noted whether
the mother breastfed the baby for at least 3 months or not, and
these records show whether the husband was a printer or a sheep
farmer (or another occupation less well represented in her
practice). The figures from her records are set out in Table 8.3.

The disparity seems considerable, for, although 28% of the
printers’ wives breastfed their babies for three months or more, as
many as 45% of the farmers’ wives did so. What is its significance?

The null hypothesis is set up that there is no difference between
printers’ wives and farmers’ wives in the period for which they
breastfed their babies. The χ2 test on a fourfold table may be
carried out by a formula that provides a short cut to the conclusion.
If a, b, c and d are the numbers in the cells of the fourfold table
as shown in Table 8.4 (in this case variable 1 is breastfeeding
(< 3 months 0, ≥ 3 months 1) and variable 2 is husband’s occupation
(printer (0) or farmer (1)), X 2 is calculated from the following 
formula:

With a fourfold table there is one degree of freedom in accordance
with the rule given earlier.

Using the above formula we find X2 = 3·418 for the breastfeeding
data. Entering the χ2 table with one degree of freedom, we read
along the row and find that 3·418 lies between 2·706 and 3·841.
Therefore 0·05 < P < 0·10 (precise P = 0·064). So, despite an
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Table 8.3 Numbers of wives of printers and farmers who breastfed
their babies for less than 3 months or for 3 months or more.

Breastfed for

Up to 3 months 3 months or more Total

Printers’ wives 36 14 50
Farmers’ wives 30 25 55

Total 66 39 105

X 2 =
(ad − bc)2 (a + b + c + d)

(a + b) (c + d) (b + d) (a + c)



apparently considerable difference between the proportions of
printers’ wives and the farmers’ wives breastfeeding their babies for
3 months or more, the probability of this result or one more
extreme occurring by chance is more than 5%.

We can in fact get the precise P value from Table A. It can be
shown that if Z has a Normal distribution with mean 0 and SD 1,
then Z 2 has a chi-squared distribution with 1 d.f. The square root
of the chi-squared value, 3·418, is 1·85. From Table A the value
tabulated for 1·8 is 0·072, and that for 1·9 is 0·057. The midpoint
is 0·0645, which is close to the value from Excel. However, we do
need the chi-squared tables for more than one degree of freedom.
This also means there is a direct correspondence between the
z value calculated for the difference in two proportions described
in Chapter 6 and a chi-squared statistic (see Exercise 8.7).

We now calculate a confidence interval of the differences
between the two proportions, as described in Chapter 6. In this
case we use the standard error based on the observed data, not
the null hypothesis. We could calculate the CI on either the rows
or the columns, and it is important that we compare proportions
of the outcome variable, that is, breastfeeding.

P1 = 14/50 = 0·280, P2 = 25/55 = 0·455, P1 − P2 = 0·175

The 95% CI is

0·175 − 1·96 × 0·0924 to 0·175 + 1·96 × 0·0924
= − 0·006 to 0·356
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Table 8.4 Notation for two group χ2 test.

Variable 1

0 1 Total

Variable 2 0 a b a + b
1 c d c + d

Total a + c b + d a + b + c + d

                                    
 
0·28 × 0·72

+
0·455 × 0·545

50                  55
SE (P1 − P2) = = 0·0924

√ 



Thus the 95% CI is wide, and includes zero, as one might expect
because the χ2 test was not significant at the 5% level.

Small numbers
When the numbers in a 2 × 2 contingency table are small, the χ2

approximation becomes poor. The following recommendations
may be regarded as a sound guide.2 In fourfold tables a χ2 test is
inappropriate if the total of the table is less than 20, or if the total
lies between 20 and 40 and the smallest expected (not observed)
value is less than 5; in contingency tables with more than one
degree of freedom it is inappropriate if more than about one fifth
of the cells have expected values less than 5 or any cell an expected
value of less than 1. An alternative to the χ2 test for fourfold tables
is known as Fisher’s exact test and is described in Chapter 9.

When the values in a fourfold table are fairly small a “correction
for continuity”, known as Yates’ correction, may be applied.3

Although there is no precise rule defining the circumstances in
which to use Yates’ correction, a common practice is to incorporate
it into χ2 calculations on tables with a total of under 100 or with any
cell containing a value less than 10. The χ2 test on a fourfold table
is then modified as follows:

The vertical bars on either side of ad − bc mean that the smaller
of those two products is taken from the larger. Half the total of
the four values is then subtracted from that difference to provide
Yates’ correction. The effect of the correction is to reduce the value
of X 2.

Applying this to the figures in Table 8.3 gives the following
result:

The precise value of P is now 0·10. It is still not significant, but the
P value is larger than it was in the previous calculation. In fourfold
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[
|ad − bc| − 0·5 (a + b + c + d)

]2

(a + b + c + d)
.

(a + b) (c + d) (b + d) (a + c)

[
(36 × 25) − (30 × 14) − (105/2)

]2
× 105

= 2·711.
(66 × 39 × 55 × 50)

X2
c =

X2
c =



tables containing lower frequencies than Table 8.3 the increase in
P value by Yates’ correction may change a result from significant
to non-significant; in any case, care should be exercised when
making decisions from small samples.

Comparing proportions
Earlier in this chapter we compared two samples by the χ2 test to

answer the question “Are the distributions of the members of these
two samples between five classes significantly different?”. Another
way of putting this is to ask “Are the relative proportions of the two
samples the same in each class?”.

For example, an industrial medical officer of a large factory wants
to immunise the employees against influenza. Five vaccines of
various types based on the current viruses are available, but nobody
knows which is preferable. From the work force 1350 employees
agree to be immunised with one of the vaccines in the first week of
December, so the medical officer randomises individuals into five
approximately equal treatment groups using a computer generated
random number scheme. In the first week of the following March
he examines the records he has been keeping to see how many
employees got influenza and how many did not. These records are
classified by the type of vaccine used (Table 8.5).

In Table 8.6 the figures are analysed by the χ2 test. For this we
have to determine the expected values. The null hypothesis is that
there is no difference between vaccines in their efficacy against
influenza. We therefore assume that the proportion of employees
contracting influenza is the same for each vaccine as it is for all
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Table 8.5 People who did or did not get influenza after inoculation with
one of five vaccines.

Numbers of employees

Type of Got Avoided Proportion got 
vaccine influenza influenza Total influenza

I 43 237 280 0·15
II 52 198 250 0·21

III 25 245 270 0·09
IV 48 212 260 0·18
V 57 233 290 0·20

Total 225 1125 1350



combined. This proportion is derived from the total who got
influenza, and is 225/1350. To find the expected number in each
vaccine group who would contract the disease we multiply the
actual numbers in the Total column of Table 8.5 by this proportion.
Thus 280 × (225/1350) = 46·7; 250 × (225/1350) = 41·7; and so
on. Likewise the proportion who did not get influenza is 1125/1350.

The expected numbers of those who would avoid the disease
are calculated in the same way from the totals in Table 8.5, so
that 280 × (1125/1350) = 233·3; 250 × (1250/1350) = 208·3;
and so on. The procedure is thus the same as shown in Tables 8.1
and 8.2.

The calculations in Table 8.6 show that X 2 with four degrees of
freedom is 16·564, and 0·001 < P < 0·01 (precise P = 0·002). This
is a highly significant result. But what does it mean?

Splitting of χχ22

Inspection of Table 8.6 shows that the largest contribution
to the total X 2 comes from the figures for vaccine III. They are
8·889 and 1·778, which together equal 10·667. If this figure is
subtracted from the total X 2, 16·564 − 10·667 = 5·897. This gives
an approximate figure for X 2 for the remainder of the table with
three degrees of freedom (by removing the vaccine III we have
reduced the table to four rows and two columns). We then find
that P = 0·117, a non-significant result. However, this is only a
rough approximation. To check it exactly we apply the X 2 test to
the figures in Table 8.4 minus the row for vaccine III. In other
words, the test is now performed on the figures for vaccines I, II,
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Table 8.6 Calculation of χ2 test on figures in Table 8.5.

Expected numbers O − E (O − E)2/E

Type of Got Avoided Got Avoided Got Avoided
vaccine influenza influenza influenza influenza influenza influenza

I 46·7 233·3 −3·7 3·7 0·293 0·059
II 41·7 208·3 10·3 −10·3 2·544 0·509

III 45·0 225·0 −20·0 20·0 8·889 1·778
IV 43·3 216·7 4·7 −4·7 0·510 0·102
V 48·3 241·7 8·7 −8·7 1·567 0·313

Total 225·0 1125·0 0 0 13·803 2·761

X 2 = 16·564, d.f. = 4, P = 0·002.



IV, and V. On these figures X 2 = 2·983; d.f. = 3; P = 0·394. Thus
the probability falls within the same broad limits as obtained by the
approximate short cut given above. We can conclude that the
figures for vaccine III are responsible for the highly significant
result of the total X 2 of 16·564.

But this is not quite the end of the story. Before concluding from
these figures that vaccine III is superior to the others we ought to
carry out a check on other possible explanations for the disparity.
The process of randomisation in the choice of the persons to receive
each of the vaccines should have balanced out any differences
between the groups, but some may have remained by chance.
The sort of questions worth examining now are: Were the people
receiving vaccine III as likely to be exposed to infection as those
receiving the other vaccines? Could they have had a higher level
of immunity from previous infection? Were they of comparable
socioeconomic status? Of similar age on average? Were the sexes
comparably distributed? Although some of these characteristics
could have been more or less balanced by stratified randomisation,
it is as well to check that they have in fact been equalised before
attributing the numeral discrepancy in the result to the potency of
the vaccine.

χχ22 test for trend
Table 8.1 is a 5 × 2 table, because there are five socioeconomic

classes and two samples. Socioeconomic groupings may be
thought of as an example of an ordered categorical variable, as
there are some outcomes (for example, mortality) in which it is
sensible to state that (say) social class II is between social class I
and social class III. The χ2 test described at that stage did not make
use of this information; if we had interchanged any of the rows, the
value of X2 would have been exactly the same. Looking at the
proportions p in Table 8.1 we can see that there is no real ordering
by social class in the proportions of self poisoning; social class V is
between social classes I and II. However, in many cases, when the
outcome variable is an ordered categorical variable, a more powerful
test can be devised which uses this information.

Consider a randomised controlled trial of health promotion in
general practice to change people’s eating habits.4 Table 8.7 gives
the results from a review at 2 years, to look at the change in the
proportion eating poultry.
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If we give each category a score x the χ2 test for trend is
calculated in the following way. Let

and

Then

where N is the total sample size, p− =
∑

a/N and q− =
∑

b/N.
For the data in Table 8.7,

N = 627∑
a = 317 ∑
ax = 100 × 1 + 175 × 0 − 42 × 1 = 58∑
nx = 178 × 1 + 348 × 0 − 101 × 1 = 77

Exp = 58 − 317 × 77/627 = 19·07∑
nx2 = 178 × 12 + 348 × 02 + 101 × (−1)2 = 279

(
∑

nx)2/N = 772/627 = 9·46

Thus

Exx = 279 − 9·46 = 269·54
p– = 317/627 = 0·5056, q– = 310/627 = 0·4944
X 2 = 19·072/(269·54 × 0·5056 × 0·4944) = 5·20

STATISTICS AT SQUARE ONE

88

∑
a
∑

nx

N
Exp =

∑
ax −

(∑
nx

2

N
Exx = 

∑
nx2 −

E 2
xp

Exxpq
X 2 =

Table 8.7 Change in eating poultry in randomised trial4.

Proportion in
Intervention Control Total intervention Score

a b n p = a/n x
Increase 100 78 178 0·56 1
No change 175 173 348 0·50 0
Decrease 42 59 101 0·42 −1

Total 317 310 627 0·51

(



This has one degree of freedom because the linear scoring means
that when one expected value is given all the others can be
determined directly, and we find P = 0·02. The usual χ2 test gives
a value of X 2 = 5·51; d.f. = 2; P = 0·064. Thus the more sensitive
χ2 test for trend yields a significant result because the test uses
more information about the experimental design. The values for
the scores are to some extent arbitrary. However, it is usual to
choose them equally spaced on either side of zero. Thus if there are
four groups the scores would be − 3, − 1, + 1, + 3, and for five groups
− 2, − 1, 0, + 1, + 2. The X2 statistic is quite robust to other values
for the scores provided that they are steadily increasing or steadily
decreasing.

Note that this is another way of splitting the overall X2 statistic.
The overall X2 will always be greater than the X2 for trend, but
because the latter uses only one degree of freedom, it is often
associated with a smaller probability. Although one is often counselled
not to decide on a statistical test after having looked at the data, it
is obviously sensible to look at the proportions to see if they are
plausibly monotonic (go steadily up or down) with the ordered
variable, especially if the overall χ2 test is non-significant.

Comparison of an observed
and a theoretical distribution 

In the cases so far discussed the observed values in one sample
have been compared with the observed values in another. But
sometimes we want to compare the observed values in one sample
with a theoretical distribution.

For example, a geneticist has a breeding population of mice in
his laboratory. Some are entirely white, some have a small patch of
brown hairs on the skin, and others have a large patch. According
to the genetic theory for the inheritance of these coloured patches
of hair the population of mice should consist of 51·0% entirely
white, 40·8% with a small brown patch, and 8·2% with a large
brown patch. In fact, among the 784 mice in the laboratory 380
are entirely white, 330 have a small brown patch, and 74 have a
large brown patch. Do the proportions differ from those expected?

The data are set out in Table 8.8. The expected numbers are
calculated by applying the theoretical proportions to the total,
namely 0·510 × 784, 0·408 × 784 and 0·082 × 784. The degrees
of freedom are calculated from the fact that the only constraint is
that the total for the expected cases must equal the total for the
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observed cases, and so the degrees of freedom are the number of
rows minus one. Thereafter the procedure is the same as in previous
calculations of X 2. In this case it comes to 2·875. The X 2 table is
entered at two degrees of freedom. We find that P = 0·238.
Consequently, the null hypothesis of no difference between the
observed distribution and the theoretically expected one is not
disproved. The data conform to the theory.

McNemar’s test
McNemar’s test for paired nominal data was described in

Chapter 6, using a Normal approximation. In view of the relationship
between the Normal distribution and the χ2 distribution with one
degree of freedom, we can recast the McNemar test as a variant of
a χ2 test. The results are often expressed as in Table 8.9.

McNemar’s test is then
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Table 8.8 Calculation of X 2 for comparison between actual distribution
and theoretical distribution.

Observed Theoretical Expected
Mice cases proportions cases O − E (O − E)2/E

Entirely white 380 0·510 400 −20 1·0000
Small brown patch 330 0·408 320 10 0·3125
Large brown patch 74 0·082 64 10 1·5625

Total 784 1·000 784 0 2·8750

Table 8.9 Notation for the McNemar test.

First subject of pair

Variable 1
Variable 2 0 1 Total

Second subject 0 e f e + f
of pair 1 g h g + h

Total e + g f + h n

X 2 =
( f − g)2  

with 1 d.f.
f + g



or, with a continuity correction,

The data from Table 6.3 are recast as shown in Table 8.10.
Thus

or

We find that for the χ2 values, each with 1 d.f., P = 0·024 and
P = 0·037, respectively. The result is identical to that given using
the Normal approximation described in Chapter 6, which gives z
statistics as the square root the chi squared values.

Extensions of the χ2 test
If the outcome variable in a study is nominal, the χ2 test can be

extended to look at the effect of more than one input variable, for
example to allow for confounding variables. This is most easily
done using multiple logistic regression, a generalisation of multiple
regression, which is described in Chapter 11. If the data are
matched, then a further technique (conditional logistic regression)
should be employed. These are described in more detail in
Statistics at Square Two.5
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X 2
c =

(10 − 23)2

= 5·12
10 + 23

X 2
c =

( 10 − 23 − 1)2

= 4·36
10 + 23

Table 8.10 Data from Table 6.3 for McNemar’s test.

First subject of pair

Responded Did not respond

Second subject Responded 16 10
of pair Did not respond 23 5

X 2
c =

( f − g −1)2

with 1 d.f.
f + g



Common questions
I have matched data, but the matching criteria
were very weak. Should I use McNemar’s test?

The general principle is that if the data are matched in any way,
the analysis should take account of it. If the matching is weak then
the matched analysis and the unmatched analysis should agree. In
some cases when there are a large number of pairs with the same
outcome, it would appear that McNemar’s test is discarding a lot
of information, and so is losing power. However, imagine we are
trying to decide which of two high jumpers is the better. They each
jump over a bar at a fixed height, and then the height is increased.
It is only when one fails to jump a given height and the other
succeeds that a winner can be announced. It does not matter how
many jumps both have cleared.

Reading and reporting chi squared tests
• It is conventional to use the Greek χ2 to denote the test and the

distribution, but the Latin X 2 for the observed statistic—for
example, “from the χ2 test we obtained X 2 = 5·1 …”.

• Chi squared tests with many degrees of freedom are often ill
specified and the results should be treated with caution. If
non-significant, they do not imply that certain results are unlikely
by chance, and if significant it is unclear what has been proven.

• Report the X2 statistic, the degrees of freedom and the P values,
with the estimated difference and a 95% confidence interval for
the true difference. Thus in the breastfeeding example we write
X 2 = 3·418, d.f. = 1, P = 0·064, difference in proportions 0·17,
95% CI − 0·006 to 0·356.

Exercises
Exercise 8.1

In a trial of a new drug against a standard drug for the treatment
of depression the new drug caused some improvement in 56% of
73 patients and the standard drug some improvement in 41% of
70 patients. The results were assessed in five categories as follows:

New treatment: much improved 18, improved 23,
unchanged 15, worse 9, much
worse 8
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Standard treatment: much improved 12, improved 17,
unchanged 19, worse 13, much
worse 9

What is the value of X 2 which takes no account of the ordered
value of data, what is the value of the X 2 test for trend, and the P
value? How many degrees of freedom are there? What is the value
of P in each case?

Exercise 8.2 

An outbreak of pediculosis capitis is being investigated in a girls’
school containing 291 pupils. Of 130 children who live in a nearby
housing estate 18 were infested and of 161 who live elsewhere 37
were infested. What is the X 2 value of the difference, and what is
its significance? Find the difference in infestation rates and a 95%
confidence interval for the difference.

Exercise 8.3

The 55 affected girls were divided at random into two groups of
29 and 26. The first group received a standard local application
and the second group a new local application. The efficacy of each
was measured by clearance of the infestation after one application.
By this measure the standard application failed in ten cases and
the new application in five. What is the X 2 value of the difference
(with Yates’ correction), and what is its significance? What is the
difference in clearance rates and an approximate 95% confidence 
interval?

Exercise 8.4

A general practitioner reviewed all patient notes in four practices
for 1 year. Newly diagnosed cases of asthma were noted, and
whether or not the case was referred to hospital. The following
referrals were found (total cases in parentheses): practice A, 14
(103); practice B, 11 (92); practice C, 39 (166); practice D, 31
(221). What are the X 2 and P values for the distribution of the
referrals in these practices? Do they suggest that any one practice
has significantly more referrals than others?

Exercise 8.5

Carry out a chi squared test on the data from Table 2.4 to
determine if there is an association between therapy and death or
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shunt in the PHVD trial. How does this correspond with the
results of the confidence interval calculation in Exercise 6.2?

Exercise 8.6

Carry out a chi squared test on the data from Table 2.5, to
determine if there is an association between hay fever and eczema.
How does this result compare with the results for the confidence
intervals for odds ratios in Exercise 6.4?

Exercise 8.7

Carry out a chi squared test on the data from Table 6.1, to
determine if there is a gender difference in appendicitis rates.
Contrast the value of chi-squared with the z statistic on page 54.
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9 Exact probability test

Sometimes in a comparison of the frequency of observations in a
fourfold table the numbers are too small for the χ2 test (Chapter 8).
The exact probability test devised by Fisher, Irwin and Yates1

provides a way out of the difficulty. Tables based on it have been
published—for example by Geigy2—showing levels at which the
null hypothesis can be rejected. The method will be described here
because, with the aid of a calculator, the exact probability is easily
computed.

Consider the following circumstances. Some soldiers are being
trained as parachutists. One rather windy afternoon 55 practice
jumps take place at two localities, dropping zone A and dropping
zone B. Of 15 men who jump at dropping zone A, five suffer
sprained ankles, and of 40 who are allocated dropping zone B, two
suffer this injury. The casualty rate at dropping zone A seems
unduly high, so the medical officer in charge decides to investigate
the disparity. Is it a difference that might be expected by chance?
If not, it deserves deeper study. The figures are set out in Table 9.1.
The null hypothesis is that there is no difference in the probability
of injury generating the proportion of injured men at each dropping
zone.

The method to be described tests the exact probability of
observing the particular set of frequencies in the table if the
marginal totals (that is, the totals in the last row and column) are
kept at their present values. But to the probability of getting this
particular set of frequencies we have to add the probability of
getting a set of frequencies showing greater disparity between the
two dropping zones. This is because we are concerned to know the
probability not only of the observed figures but also of the more
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extreme cases. This may seem obscure, but it ties in with the idea
of calculating tail areas in the continuous case.

For convenience of computation the table is changed round so that
the smallest number ends up in the top left hand cell. We therefore
begin by constructing Table 9.2 from Table 9.1 by transposing the
upper and lower rows.

The number of possible tables with these marginal totals is 8,
that is, the smallest marginal total plus one. The eight sets are
illustrated in Table 9.3. They are numbered in accordance with the
top left hand cell. The figures in our example appear in set 2.

For the general case we can use the following notation:1

1st variable
1 0

2nd 1 a b r1

variable 0 c d r2

s1 s2 N

The exact probability for any table is now determined from the
following formula:

r1! r2! s1! s2!

N! a! b! c! d!
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Table 9.1 Numbers of men injured and uninjured in parachute
training at two dropping zones.

Injured Uninjured Total

Dropping zone A 5 10 15
Dropping zone B 2 38 40

Total 7 48 55

Table 9.2 Numbers in Table 9.1 rearranged for exact probability
test.

Injured Uninjured Total

Dropping zone A 2 38 40
Dropping zone B 5 10 15

Total 7 48 55



The exclamation mark denotes “factorial” and means successive
multiplication by cardinal numbers in descending series; for
example, 4! means 4 × 3 × 2 × 1. By convention, 0! = 1. Factorial
functions are available on most calculators, but care is needed not
to exceed the maximum number available on the calculator.
Generally factorials can be cancelled out for easy computation on
a calculator (see p. 98).

With this formula we have to find the probability attached to the
observations in Table 9.1, which is equivalent to Table 9.2, and is
denoted by set 2 in Table 9.3. We also have to find the probabilities
attached to the more extreme cases. If ad − bc is negative, then the
extreme cases are obtained by progressively decreasing cells a and d
and increasing b and c by the same amount. If ad − bc is positive,
then progressively increase cells a and d and decrease b and c by the
same amount.3 For Table 9.2 ad − bc is negative and so the more
extreme cases are sets 0 and 1.

The best way of doing this is to start with set 0. Call the
probability attached to this set P0. Then, applying the formula,
we get:
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Table 9.3 Sets of frequencies in Table 9.2 with same marginal totals.

0 40 40 1 39 40
7 8 15 6 9 15

7 48 55 7 48 55

Set 0 Set 1

2 38 40 3 37 40
5 10 15 4 11 15

7 48 55 7 48 55

Set 2 Set 3

4 36 40 5 35 40
3 12 15 2 13 15

7 48 55 7 48 55

Set 4 Set 5

6 34 40 7 33 40
1 14 15 0 15 15

7 48 55 7 48 55

Set 6 Set 7



This cancels down to

For computation on a calculator the factorials can be cancelled out
further by removing 8! from 15! and 48! from 55! to give

We now start from the left and divide and multiply alternately.
However, on an eight digit calculator we would thereby obtain the
result 0·0000317 which does not give enough significant figures.
Consequently we first multiply the 15 by 1000. Alternate dividing
and multiplying then gives 0·0317107. We continue to work with
this figure, which is P0 × 1000, and we now enter it in the memory
while also retaining it on the display.

Remembering that we are now working with units 1000 times
larger than the real units, to calculate the probability for set 1 we
take the value of P0, multiply it by b and c from set 0, and divide it
by a and d from set 1. That is,

= 0·9865551.

The figure for P1 is retained on the display.
Likewise, to calculate the probability for set 2:

= 11·542694
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P0 = 40! 15! 7! 48!
55! 0! 40! 7! 8!

P0 = 15! 48!
55! 8!

15 × 14 × 13 × 12 × 11 × 10 × 9
55 × 54 × 53 × 52 × 51 × 50 × 49

P1 = P0

b0c0 = 0·0317107
40 × 7

a1d1 1 × 9

P2 = P1

b1c1 = 0·9865551
39 × 6

a2d2 2 × 10



This is as far as we need go, but for illustration we will calculate
the probabilities for all possible tables for the given marginal totals.

Set Probability

0 0·0000317
1 0·0009866
2 0·0115427
3 0·0664581
4 0·2049126
5 0·3404701
6 0·2837251
7 0·0918729

Total 0·9999998

A useful check is that all the probabilities should sum to one
(within the limits of rounding).

The observed set has a probability of 0·0115427. The P value is
the probability of getting the observed set, or one more extreme. A
one tailed P value would be

0·0115427 + 0·0009866 + 0·0000317 = 0·01256

and this is the conventional approach. (This value can be obtained
using the free package SISA—see http://home.clara.net/sisa/
fisher.htm). Armitage and Berry1 favour the mid P value, which
halves the observed P-value. It is given by

0·5 × 0·0115427 + 0·0009866 + 0·0000317 = 0·0068.

To get the two tailed value we double the one tailed result, thus
P = 0·025 for the conventional or P = 0·0136 for the mid P
approach.

The conventional approach to calculating the P value for
Fisher’s exact test has been shown to be conservative (that is, it
requires more evidence than is necessary to reject a false null
hypothesis). The mid P is less conservative (that is, more powerful)
and also has some theoretical advantages. This is the one we
advocate. For larger samples the P value obtained from a χ2 test
with Yates’ correction will correspond to the conventional approach,
and the P value from the uncorrected test will correspond to the
mid P value.
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In either case, the P value is less than the conventional 5% level;
the medical officer can conclude that there is a problem in dropping
zone A. The calculation of confidence intervals for the difference in
proportions for small samples is complicated and the methods
described in Chapter 6 are only strictly valid for large samples. We
use the program CIA4 to do the calculations. This gives the
estimated difference as 28·3% and the 95% CI is 6·8% to 53·5%.
(The methods of Chapter 6 give 3·5% to 53·1%.)

Common questions
Why is Fisher’s test called an exact test?

Because of the discrete nature of the data, and the limited
amount of it, combinations of results which give the same marginal
totals can be listed, and probabilities attached to them. Thus,
given these marginal totals we can work out exactly what is the
probability of getting an observed result, in the same way that we
can work out exactly the probability of getting six heads out of ten
tosses of a fair coin. One difficulty for calculating confidence
intervals is that there may not be values which correspond
“exactly” to 95%, so we cannot get an “exact” 95% confidence
interval but (say) one with a 97% coverage or one with a 94%
coverage. 

Note that we should distinguish between “exact” P values and
“precise” P values. The latter are simply P values calculated from
approximate tests such as the chi squared test, but where we can
now calculate a precise P value rather than a range such as
0·01 < P < 0·05.

Reading and reporting Fisher’s Exact Test

• Present the results given earlier as: “Injury rate in dropping
zone A was 33%, in dropping zone B 5%; difference 28% (95%
confidence interval 6·8 to 53·5% CIA) (P = 0·0136, Fisher’s
exact test mid P).’

• When reading about Fisher’s exact test, always ask whether
the P value is one sided or two sided and beware confidence
intervals that use large-sample approximations such as those
given in Chapter 6.
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Exercise
Exercise 9.1

Of 30 men employed in a small workshop 18 worked in one
department and 12 in another department. In one year five of the
18 reported sick with septic hands, and of the 12 men in the other
department one did so. Is there a difference in the departments
and how would you report this result?
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10 Rank score tests

Population distributions are characterised, or defined, by parameters
such as the mean and standard deviation. For skew distributions
we would need to know other parameters such as the degree of
skewness before the distribution could be identified uniquely, but
the mean and standard deviation are sufficient to identify the
Normal distribution uniquely. The t test described earlier depends
for its validity on an assumption that the data originate from a
Normally distributed population, and, when two groups are
compared, the difference between the two samples arises simply
because they differ only in their mean value. However, if we
were concerned that the data did not originate from a Normally
distributed population, then there are tests available which do not
make use of this assumption. Because the data are no longer
Normally distributed, the distribution cannot be characterised by
a few parameters, and so the tests are often called “nonparametric”.
This is somewhat of a misnomer because, as we shall see, to be
able to say anything useful about the population we must compare
parameters. As was mentioned in Chapter 5, if the sample sizes in
both groups are large, then lack of Normality is of less concern,
and the large-sample tests described in that chapter would apply.

Rank sum tests were described by Wilcoxon and, independently,
by Mann and Whitney; these tests have since been shown to be
equivalent. Convention has now ascribed the Wilcoxon test to
paired data and the Mann–Whitney U test to unpaired data.

Paired samples
Boogert et al.1 (data also given in Shott2) used ultrasound to record

foetal movements before and after chorionic villus sampling. The
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percentage of time the foetus spent moving is given in Table 10.1
for ten pregnant women.

If we are concerned that the differences in percentage of time
spent moving are unlikely to be Normally distributed we could use
the Wilcoxon signed rank test using the following assumptions:

1. The paired differences are independent.
2. The differences come from a symmetrical distribution.

We do not need to perform a test to ensure that the differences
come from a symmetrical distribution: an “eyeball” test will suffice.
A plot of the differences in column (4) of Table 10.1 is given in
Figure 10.1, which shows that distribution of the differences is
plausibly symmetrical. The differences are then ranked in column
5 (negative values are ignored and zero values omitted). When two
or more differences are identical each is allotted the point half way
between the ranks they would fill if distinct, irrespective of the plus
or minus sign. For instance, the differences of −1 (patient 6) and +1
(patient 9) fill ranks 1 and 2. As (1 + 2)/2 = 1·5, they are allotted rank
1·5. In column (6) the ranks are repeated for column (5), but to
each is attached the sign of the difference from column (4). A
useful check is that the sum of the ranks must add to n(n + 1)/2. In
this case 10(10 + 1)/2 = 55.

The numbers representing the positive ranks and the negative
ranks in column (6) are added up separately and only the smaller
of the two totals is used. Irrespective of its sign, the total is referred
to Table D in the Appendix against the number of pairs used in

Table 10.1 Wilcoxon test on foetal movement before and after chononic
villus sampling1,2.

Before After Difference Signed
sampling sampling (before−after) Rank rank

Patient no. (2) (3) (4) (5) (6)

1 25 18 7 9 9
2 24 27 −3 5·5 −5·5
3 28 25 3 5·5 5·5
4 15 20 −5 8 −8
5 20 17 3 5·5 5·5
6 23 24 −1 1·5 −1·5
7 21 24 −3 5·5 −5·5
8 20 22 −2 3 −3
9 20 19 1 1·5 1·5

10 27 19 8 10 10



the investigation. Rank totals larger than those in the table are
non-significant at the level of probability shown. In this case the
smaller of the ranks is 23·5. This is larger than the number (8)
given for ten pairs in Table D and so the result is not significant.
A confidence interval associated with the test is described by
Campbell and Gardner3 and by Altman et al.,4 and is easily
obtained from the program CIA.5 The median difference is zero.
CIA gives the 95% confidence interval as − 2·50 to 4·00. This is
quite narrow and so from this small study we can conclude that
we have little evidence that chorionic villus sampling alters the
movement of the foetus.

Note, perhaps contrary to intuition, that the Wilcoxon test,
although a rank test, may give a different value if the data are
transformed, say by taking logarithms. Thus it may be worth plotting
the distribution of the differences for a number of transformations to
see if they make the distribution appear more symmetrical.

Unpaired samples
A senior registrar in the rheumatology clinic of a district

hospital has designed a clinical trial of a new drug for rheumatoid
arthritis. Twenty patients were randomised into two groups of ten
to receive either the standard therapy A, or a new treatment B. The
plasma globulin fractions after treatment are listed in Table 10.2.

STATISTICS AT SQUARE ONE

104

− 5.0

− 1.0

− 3.0

5.0

3.0

1.0

7.0

9.0

D
iff

er
en

ce
 b

ef
or

e 
an

d 
af

te
r 

sa
m

pl
in

g

Figure 10.1 Plot of differences in fetal movement with mean value.



We wish to test whether the new treatment has changed the plasma
globulin, and we are worried about the assumption of Normality.

The first step is to plot the data (Figure 10.2).
The clinician was concerned about the lack of Normality of the

underlying distribution of the data and so decided to use a
nonparametric test. The appropriate test, the Mann–Whitney
U test, is computed as follows.

The observations in the two samples are combined into a single
series and ranked in order, but in the ranking the figures from
one sample must be distinguished from those of the other. The
data appear as set out in Table 10.3. To save space they have
been set out in two columns, but a single ranking is done. The
figures for sample B are set in bold type. Again the sum of the
ranks is n(n + 1)/2.

The ranks for the two samples are now added separately, and the
smaller total is used. It is referred to Table E, with n1 equal to the

RANK SCORE TESTS

105

Table 10.2 Plasma globulin fraction after randomisation to treatment
A or B.

Treatment A 38 26 29 41 36 31 32 30 35 33
Treatment B 45 28 27 38 40 42 39 39 34 45

Treatment
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Treatment
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Figure 10.2 Plasma globulin fraction after treatments A or B with mean
values.



number of observations in one sample and n2 equal to the number
of observations in the other sample. In this case they both equal
10. At n1 = 10 and n2 = 10 the upper part of the table shows the
figure 78. The smaller total of the ranks is 81·5. Since this is
slightly larger than 78 it does not reach the 5% level of probability.
The result is therefore not significant at that level. In the lower part
of Table E, which gives the figures for the 1% level of probability,
the figure for n1 = 10 and n2 = 10 is 71. As expected, the result is
further from that than the 5% figure of 78.

To calculate a meaningful confidence interval we assume that if
the two samples come from different populations the distribution of
these populations differs only in that one appears shifted to the left
or right of the other. This means, for example, that we do not expect
one sample to be strongly right skewed and one to be strongly left
skewed. If the assumption is reasonable then a confidence interval
for the median difference can be calculated.3,4 Note that the CIA
computer program does not calculate the difference in medians,
but rather the median of all possible differences between the two
samples. This is usually close to the median difference and has
theoretical advantages. From CIA we find that the difference in
medians is − 5·5 and the approximate 95% confidence interval is
−10 to 1·0. As might be expected from the significance test, this
interval includes zero. Although this result is not significant it would
be unwise to conclude that there was no evidence that treatments A
and B differed because the confidence interval is quite wide. This
suggests that a larger study should be planned.

If the two samples are of unequal size a further calculation is
needed after the ranking has been carried out as in Table 10.3. Let
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Table 10.3 Combined results of Table 10.2.

Globulin fraction Rank Globulin fraction Rank

26 1 36 11
27 2 38 12·5
28 3 38 12·5
29 4 39 14·5
30 5 39 14·5
31 6 40 16
32 7 41 17
33 8 42 18
34 9 45 19·5
35 10 45 19·5

Totals of ranks: sample A, 81·5; sample B, 128·5.



n1 be the number of patients or objects in the smaller sample
and T1 the total of the ranks for that sample. Let n2 be the number
of patients or objects in the larger sample. Then calculate T2 from
the following formula:

T2 = n1(n1 + n2 + 1) − T1.

Finally enter Table E with the smaller of T1 or T2. As before, only
totals smaller than the critical points in Table E are significant. See
Exercise 10.2 for an example of this method.

If there are only a few ties, that is, if two or more values in the
data are equal (say, less than 10% of the data) then for sample sizes
outside the range of Table E we can calculate

On the null hypothesis that the two samples come from the same
population, z is approximately Normally distributed, mean zero
and standard deviation one, and can be referred to Table A to
calculate the P value.

From the data of Table 10.2 we obtain

and from Table A we find that P is about 0·075, which corroborates
the earlier result.

Data that are not Normally distributed can sometimes be
transformed by the use of logarithms or some other method
to make them Normally distributed, and a t test performed.
Consequently the best procedure to adopt may require careful
thought. The extent and nature of the difference between two
samples is often brought out more clearly by standard deviations
and t tests than by nonparametric tests.
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z =
 T1 − n1 (n1 + n2 + 1)/2

[n1 n2 (n1 + n2 + 1)/12]

z =
 81·5 − 10 × 21/2

= 1·78
10 × 10 × 21/12

√

√
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It is an interesting observation that the Mann–Whitney U test is
unaffected by simple transformations, but the Wilcoxon signed
rank test is affected. This is because the rank of a set of numbers
and the rank of (say) the log of these numbers are the same.
However, the rank of the difference in a set of numbers and the rank
of the difference in their logs are not necessarily the same.

Common questions
Nonparametric tests are valid for both non-Normally
distributed data and Normally distributed data, so why not
use them all the time?

It would seem prudent to use nonparametric tests in all cases,
which would save one the bother of testing for Normality. Parametric
tests are preferred, however, for the following reasons:

• As I have tried to emphasise in this book, we are rarely
interested in a significance test alone; we would like to say
something about the population from which the samples came,
and this is best done with estimates of parameters and
confidence intervals.

• It is difficult to do flexible modelling with nonparametric tests,
for example allowing for confounding factors using multiple
regression (see Chapter 11).

Do nonparametric tests compare medians?

It is a commonly held belief that a Mann–Whitney U test is in
fact a test for differences in medians. However, two groups could
have the same median and yet have a significant Mann–Whitney
U test. Consider the following data for two groups, each with
100 observations. Group 1: 0 (× 98), 1, 2; Group 2: 0 (× 51),
1, 2 (× 48). The median in both cases is 0, but from the Mann–
Whitney test P < 0·0001.

Only if we are prepared to make the additional assumption that
the difference in the two groups is simply a shift in location (that
is, the distribution of the data in one group is simply shifted by a
fixed amount from the other) can we say that the test is a test of
the difference in medians. However, if the groups have the same
distribution, then a shift in location will move medians and means
by the same amount and so the difference in medians is the same
as the difference in means. Thus the Mann–Whitney U test is also
a test for the difference in means.
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How is the Mann–Whitney U test related to the t test?

If one were to input the ranks of the data rather than the data
themselves into a two sample t test program, the P value obtained
would be very close to that produced by a Mann–Whitney U test.

Reading and reporting rank score tests
When reading a result from a nonparametric test, one is often

faced with a bald P value. One should then ask what hypothesis
is being tested. As shown above, one has to make further
assumptions before statements concerning parameters such as
means can be made.

A Mann–Whitney U test such as that described earlier should be
reported as “Mann–Whitney P = 0·075, difference in medians
− 5·5, 95% CI − 10 to 1·0”. Often, because of inappropriate software,
confidence intervals for nonparametric tests are not reported, but
there are now a number of packages which will calculate them. For
the two sample test, a confidence interval is only interpretable
if the distribution of the outcome variable is similar in the two
groups; if the distributions are markedly different, then the
two groups differ in more than just a shift in location. Differences
in spread can be as important as differences in medians.6

Exercises
Exercise 10.1

A new treatment in the form of tablets for the prophylaxis of
migraine has been introduced, to be taken before an impending
attack. Twelve patients agree to try this remedy in addition to the
usual general measures they take, subject to advice from their
doctor on the taking of analgesics also.

A crossover trial with identical placebo tablets is carried out over
a period of 8 months. The numbers of attacks experienced by each
patient on, firstly, the new treatment and, secondly, the placebo
were as follows: patient (1) 4 and 2; patient (2) 12 and 6; patient
(3) 6 and 6; patient (4) 3 and 5; patient (5)15 and 9; patient (6)
10 and 11; patient (7) 2 and 4; patient (8) 5 and 6; patient (9) 11
and 3; patient (10) 4 and 7; patient (11) 6 and 0; patient (12) 2
and 5. In a Wilcoxon rank sum test what is the smaller total of
ranks? Is it significant at the 5% level?
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Exercise 10.2

Another doctor carried out a similar pilot study with this
preparation on eight patients, giving the same placebo to ten other
patients. The numbers of migraine attacks experienced by the
patients over a period of 6 months were as follows.

Group receiving new preparation: patient (1) 8; (2) 6; (3) 0;
(4) 3; (5) 14; (6) 5;
(7) 11; (8) 2

Group receiving placebo: patient (9) 7; (10) 10;
(11) 4; (12) 11; (13) 2;
(14) 8; (15) 8; (16) 6;
(17) 1; (18) 5

In a Mann–Whitney two sample test what is the smaller total of
ranks? Which sample of patients provides it? Is the difference
significant at the 5% level?
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11 Correlation and
regression

The word correlation is used in everyday life to denote some form
of association. We might say that we have noticed a correlation
between foggy days and attacks of wheeziness. However, in
statistical terms we use correlation to denote association between
two quantitative variables. We also assume that the association is
linear, that one variable increases or decreases a fixed amount for a
unit increase or decrease in the other. The other technique that
is often used in these circumstances is regression, which involves
estimating the best straight line to summarise the association.

Correlation coefficient
The degree of association is measured by a correlation coefficient,

denoted by r. It is sometimes called Pearson’s correlation coefficient
after its originator, and is a measure of linear association. If a
curved line is needed to express the relationship, other and more
complicated measures of the correlation must be used.

The correlation coefficient is measured on a scale that varies
from + 1 through 0 to − 1. Complete or perfect correlation between
two variables is expressed by either + 1 or − 1. When one variable
increases as the other increases the correlation is positive; when
one decreases as the other increases it is negative. Complete
absence of correlation is represented by 0. Figure 11.1 gives some
graphical representations of correlation.

Looking at data: scatter diagrams
When an investigator has collected two series of observations

and wishes to see whether there is a relationship between them, he
or she should first construct a scatter diagram. The vertical scale
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represents one set of measurements and the horizontal scale the
other. If one set of observations consists of experimental results
and the other consists of a time scale or observed classification
of some kind, it is usual to put the experimental results on the
vertical axis. These represent what is called the “dependent
variable”. The “independent variable”, such as time or height or
some other observed classification, is measured along the
horizontal axis, or baseline.

The words “independent” and “dependent” could puzzle the
beginner because it is sometimes not clear what is dependent
on what. This confusion is a triumph of common sense over
misleading terminology, because often each variable is dependent
on some third variable, which may or may not be mentioned. It
is reasonable, for instance, to think of the height of children as
dependent on age rather than the converse, but consider a positive
correlation between mean tar yield and nicotine yield of certain
brands of cigarette.1 The nicotine liberated is unlikely to have its
origin in the tar: both vary in parallel with some other factor or
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factors in the composition of the cigarettes. The yield of the one
does not seem to be “dependent” on the other in the sense that,
on average, the height of a child depends on his age. In such cases
it often does not matter which scale is put on which axis of the
scatter diagram. However, if the intention is to make inferences
about one variable from the other, the observations from which the
inferences are to be made are usually put on the baseline. As a
further example, a plot of monthly deaths from heart disease
against monthly sales of ice cream would show a negative association.
However, it is hardly likely that eating ice cream protects from
heart disease! It is simply that the mortality rate from heart disease
is inversely related—and ice cream consumption positively
related—to a third factor, namely environmental temperature.

Calculation of the correlation coefficient
A paediatric registrar has measured the pulmonary anatomical

dead space (in ml) and height (in cm) of 15 children. The data are
given in Table 11.1 and the scatter diagram is shown in Figure 11.2.
Each dot represents one child, and it is placed at the point
corresponding to the measurement of the height (horizontal axis)
and the dead space (vertical axis). The registrar now inspects the
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Table 11.1 Height and pulmonary anatomical dead space in
15 children.

Child number Height (cm) Dead space (ml), y
(1) (2) (3)

1 110 44
2 116 31
3 124 43
4 129 45
5 131 56
6 138 79
7 142 57
8 150 56
9 153 58

10 155 92
11 156 78
12 159 64
13 164 88
14 168 112
15 174 101

Total 2169 1004
Mean 144·6 66·933



pattern to see whether it seems likely that the area covered by the
dots centres on a straight line or whether a curved line is needed.
In this case the paediatrician decides that a straight line can
adequately describe the general trend of the dots. His next step will
therefore be to calculate the correlation coefficient.

When making the scatter diagram (Figure 11.2) to show the
heights and pulmonary anatomical dead spaces in the 15 children,
the paediatrician sets out figures as in columns (1), (2), and (3) of
Table 11.1. It is helpful to arrange the observations in serial order
of the independent variable when one of the two variables is clearly
identifiable as independent. The corresponding figures for the
dependent variable can then be examined in relation to the
increasing series for the independent variable. In this way we get
the same picture, but in numerical form, as appears in the scatter
diagram.

The calculation of the correlation coefficient is as follows, with x
representing the values of the independent variable (in this case
height) and y representing the values of the dependent variable (in
this case anatomical dead space). The formula to be used is:
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Figure 11.2 Scatter diagram of relation in 15 children between height
and pulmonary anatomical dead space.

r =
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(x − x–) (y − y–)[∑
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which can be shown to be equal to:

For the data in Table 11.1 we get 

The correlation coefficient of 0·846 indicates a strong positive
correlation between size of pulmonary anatomical dead space and
height of child. But in interpreting correlation it is important to
remember that correlation is not causation. There may or may not be
a causative connection between the two correlated variables.
Moreover, if there is a connection it may be indirect.

A part of the variation in one of the variables (as measured
by its variance) can be thought of as being due to its relationship
with the other variable and another part as due to undetermined
(often “random”) causes. The part due to the dependence of
one variable on the other is measured by r 2. For these data r 2 =
0·716, so we can say that 72% of the variation between children
in size of the anatomical dead space is accounted for by the
height of the child. If we wish to label the strength of the
association, for absolute values of r, 0 – 0·19 is regarded as very
weak, 0·2 – 0·39 as weak, 0·40 – 0·59 as moderate, 0·6 – 0·79 as
strong and 0·8 – 1 as very strong correlation, but these are
rather arbitrary limits, and the context of the results should be
considered.

Significance test
To test whether the association is merely apparent, and might

have arisen by chance, use the t test in the following form:

CORRELATION AND REGRESSION

115

r =
∑

xy − nxy
__

(n − 1)SD(x)SD(y)

r = 5426·6
14 × 19·3679 × 23·6476 

= 0·846

t = r
n − 2
1 − r 2

√ 
(11.1)



The t table (Table B in the Appendix) is entered at n – 2 degrees
of freedom.

For example, the correlation coefficient for the data in Table 11.1
was 0·846. The number of pairs of observations was 15. Applying
equation (11.1), we have:

Entering Table B at 15 − 2 = 13 degrees of freedom we find that
at t = 5·72, P < 0·001 so the correlation coefficient may be
regarded as highly significant. Thus (as could be seen immediately
from the scatter plot) we have a very strong correlation between
dead space and height which is most unlikely to have arisen
by chance.

The assumptions governing this test are as follows:

• Both variables are plausibly Normally distributed.
• There is a linear relationship between them.
• The null hypothesis is that there is no association between

them.

The test should not be used for comparing two methods of
measuring the same quantity, such as two methods of measuring
peak expiratory flow rate. Its use in this way appears to be a
common mistake, with a significant result being interpreted as
meaning that one method is equivalent to the other. The reasons
have been extensively discussed,2 but it is worth recalling that a
significant result tells us little about the strength of a relationship.
From the formula it should be clear that with even with a very
weak relationship (say r = 0·1) we would get a significant result
with a large enough sample (say n > 1000).

Spearman rank correlation
A plot of the data may reveal outlying points well away from

the main body of the data, which could unduly influence the
calculation of the correlation coefficient. Alternatively, the variables
may be quantitative discrete such as a mole count, or ordered
categorical such as a pain score. A nonparametric procedure, due
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t = 0·846
15 − 2

1 − 0·8462
= 5·72
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to Spearman, is to replace the observations by their ranks in the
calculation of the correlation coefficient. This results in a simple
formula for Spearman’s rank correlation, rs:

where d is the difference in the ranks of the two variables for a
given individual. Thus we can derive Table 11.2 from the data in
Table 11.1.

From this we get that

In this case the value is very close to that of the Pearson
correlation coefficient. For n > 10, the Spearman rank correlation
coefficient can be tested for significance using the t test given
earlier.

CORRELATION AND REGRESSION

117

Table 11.2 Derivation of Spearman rank correlation from data of
Table 11.1.

Child number Rank height Rank dead space d d 2

1 1 3 2 4
2 2 1 − 1 1
3 3 2 − 1 1
4 4 4 0 0
5 5 5·5 0·5 0·25
6 6 11 5 25
7 7 7 0 0
8 8 5·5 − 2·5 6·25
9 9 8 − 1 1

10 10 13 3 9
11 11 10 − 1 1
12 12 9 − 3 9
13 13 12 − 1 1
14 14 15 1 1
15 15 14 − 1 1

Total 60·5

r = 1 −
6
∑

d 2

n(n2 − 1)

rs = 1 − 6 × 60·5
15 × (225 − 1) 

= 0·8920



The regression equation
Correlation describes the strength of an association between two

variables, and is completely symmetrical: the correlation between
A and B is the same as the correlation between B and A. However,
if the two variables are related it means that when one changes by
a certain amount the other changes on an average by a certain
amount. For instance, in the children described earlier greater height
is associated, on average, with greater anatomical dead space. If y
represents the dependent variable and x the independent variable,
this relationship is described as the regression of y on x.

The relationship can be represented by a simple equation called
the regression equation. In this context “regression” (the term is a
historical anomaly) simply means that the average value of y is a
“function” of x, that is, it changes with x.

The regression equation representing how much y changes with
any given change of x can be used to construct a regression line on
a scatter diagram, and in the simplest case this is assumed to be a
straight line. The direction in which the line slopes depends on
whether the correlation is positive or negative. When the two sets
of observations increase or decrease together (positive) the line
slopes upwards from left to right; when one set decreases as the
other increases the line slopes downwards from left to right. As the
line must be straight, it will probably pass through few, if any, of
the dots. Given that the association is well described by a straight
line, we have to define two features of the line if we are to place
it correctly on the diagram. The first of these is its distance above
the baseline; the second is its slope. These are expressed in the
following regression equation:

y = α + βx.

With this equation we can find a series of values of yfit, the
dependent variable, that correspond to each of a series of values
of x, the independent variable. The parameters α and β have to
be estimated from the data. The parameter α signifies the distance
above the baseline at which the regression line cuts the vertical
(y) axis; that is, when y = 0. The parameter β (the regression
coefficient) signifies the amount by which change in x must be
multiplied to give the corresponding average change in y, or
the amount y changes for a unit increase in x. In this way it
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represents the degree to which the line slopes upwards or
downwards.

The regression equation is often more useful than the correlation
coefficient. It enables us to predict y from x and gives us a better
summary of the relationship between the two variables. If, for a
particular value of x, xi, the regression equation predicts a value of
yfit, the prediction error is yi − yfit. It can easily be shown that any
straight line passing through the mean values x– and y– will give a
total prediction error 

∑
(yi − yfit) of zero because the positive and

negative terms exactly cancel. To remove the negative signs we
square the differences and the regression equation chosen to
minimise the sum of squares of the prediction errors, S2 =

∑
(yi − yfit)

2

We denote the sample estimates of α and β by a and b. It can be
shown that the one straight line that minimises S2, the least squares
estimate, is given by

and

a = y
_

− bx
_

It can be shown that

which is of use because we have calculated all the components of
equation (11.2) in the calculation of the correlation coefficient.

The calculation of the correlation coefficient on the data in
Table 11.2 gave the following:

∑
xy = 150 605, SD(x) = 19·3679, y– = 66·93, x– = 144·6

Applying these figures to the formulae for the regression
coefficients, we have:
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b =
∑

(x − x–) (y − y–)∑
(x − x–)2

b =
∑

xy − nxy
__

(n − 1)SD(x)2
(11.2)



a = 66·93 − (1·033 × 144·6) = − 82·4

Therefore, in this case, the equation for the regression of y on x
becomes

y = − 82·4 + 1·033x.

This means that, on average, for every increase in height of 1 cm
the increase in anatomical dead space is 1·033 ml over the range of
measurements made.

The line representing the equation is shown superimposed on
the scatter diagram of the data in Figure 11.3. The way to draw the
line is to take three values of x, one on the left side of the scatter
diagram, one in the middle and one on the right, and substitute
these in the equation, as follows:

If x = 110, y = (1·033 × 110) − 82·4 = 31·2
If x = 140, y = (1·033 × 140) − 82·4 = 62·2
If x = 170, y = (1·033 × 170) − 82·4 = 93·2

Although two points are enough to define the line, three are better
as a check. Instead of the middle point one could use the mean for
x, since the line must go through the point defined by the mean of
x and y. Thus the mean for x is 144·6, and if x = 144·6, y = 1·033 ×
144·6 − 82·4 = 66·9, which is the mean for y. Having put the points
on a scatter diagram, we simply draw the line through them.

The standard error of the slope SE(b) is given by
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b = 150 605 − 15 × 66·93 × 144·6 = 5426·6
14 × 19·36792 5251·6

= 1·033 ml/cm

√ SE(b) =
Sres∑
(x − x–)2

(11.3)



where Sres is the residual standard deviation, given by:

This can be shown to be algebraically equal to

We already have to hand all of the terms in this expression. Thus
Sres is the square root of 23·64762(1 − 0·8462)14/13 = 171·2029 =
13·08445. The denominator of (11.3) is 72·4680. Thus SE(b) =
13·08445/72·4680 = 0·18055.

We can test whether the slope is significantly different from
zero by:

t = b/SE(b) = 1·033/0·18055 = 5·72

Again, this has n − 2 = 15 − 2 = 13 degrees of freedom. The
assumptions governing this test are as follows:

CORRELATION AND REGRESSION

121

40

20

0

0 100 110 120 130

Height of children (cm)

140 150 160 170 180

100

80

60

120

A
na

to
m

ic
al

 d
ea

d 
sp

ac
e 

(m
l)

Figure 11.3 Regression line drawn on scatter diagram relating height
and pulmonary anatomical dead space in 15 children (Figure 11.2).

Sres =
∑

(y − yfit)
2

n − 2

√

√
SD(y)2(1 − r 2)(n − 1)

n − 2

√ 



• The prediction errors are approximately Normally distributed.
Note that this does not mean that the x or y variable has to be
Normally distributed.

• The relationship between the two variables is linear.
• The scatter of points about the line is approximately constant—

we would not wish the variability of the dependent variable to
be growing as the independent variable increases. If this is the
case, try taking logarithms of both the x and y variables.

Note that the test of significance for the slope gives exactly the
same value of P as the test of significance for the correlation
coefficient. Although the two tests are derived differently, they are
algebraically equivalent, which makes intuitive sense, since a test
for a significant correlation should be the same as a test for a
significant slope.
We can obtain a 95% confidence interval for b from

b − t0·05 × SE(b) to b + t0·05 × SE(b)

where the t statistic from Table B has 13 degrees of freedom,
and is equal to 2·160. Thus for our data the 95% confidence
interval is

1·033 − 2·160 × 0·18055 to 1·033 + 2·160 × 0·18055
= 0·643 to 1·422

Regression lines give us useful information about the data
they are collected from. They show how one variable changes on
average with another, and they can be used to find out what one
variable is likely to be when we know the other—provided that
we ask this question within the limits of the scatter diagram. To
project the line at either end—to extrapolate—is always risky
because the relationship between x and y may change or some kind
of cut off point may exist. For instance, a regression line might be
drawn relating the chronological age of some children to their bone
age, and it might be a straight line between, say, the ages of 5 and
10 years, but to project it up to the age of 30 would clearly lead to
error. Computer packages will often produce the intercept from a
regression equation, with no warning that it may be totally
meaningless. Consider a regression of blood pressure against age in
middle aged men. The regression coefficient is often positive,
indicating that blood pressure increases with age. The intercept
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is often close to zero, but it would be wrong to conclude that
this is a reliable estimate of the blood pressure in newly born
male infants!

More advanced methods
It is possible to have more than one independent variable—in

which case the method is known as multiple regression.3,4 This is
the most versatile of statistical methods and can be used in many
situations. For example it can allow for more than one predictor;
age as well as height in the above example. It can also allow for
covariates – in a clinical trial the dependent variable may be
outcome after treatment, the first independent variable can be
binary, 0 for placebo and 1 for active treatment, and the second
independent variable may be a baseline variable, measured before
treatment, but likely to affect outcome.

Common questions
If two variables are correlated
are they causally related?

It is a common error to confuse correlation and causation. All
that correlation shows is that the two variables are associated.
There may be a third variable, a confounding variable that is related
to both of them. For example, as stated earlier, monthly deaths by
drowning and monthly sales of ice cream are positively correlated,
but no one would say the relationship was causal!

How do I test the assumptions underlying
linear regression?

First, always look at the scatter plot and ask whether it is
linear. Having obtained the regression equation, calculate the
residuals ei = yi − yfit. A histogram of ei will reveal departures from
Normality and a plot of ei versus yfit will reveal whether the
residuals increase in size as yfit increases.

When should I use correlation and when should
I use regression?

If there is a clear causal pathway, then generally it is better
to use regression, although quoting the correlation coefficient
as a measure of the strength of the relationship is helpful. In
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epidemiological surveys, where one is interested only in the strength
of a relationship, then correlations are preferable. For example, in
a survey comparing ovarian cancer rates by country with the sales
of oral contraceptives, it is the existence of a relationship that is
of interest, and so a correlation coefficient would be a useful 
summary.

Reading and reporting correlation
and regression
• Make clear what type of correlation coefficient is being used

(e.g. Pearson or Spearman).
• Ask whether the relationship is really linear. Do the authors

produce evidence that the model is reasonable? For example,
do they discuss the distribution of the residuals?

• Quote the correlation coefficient and its P value, or the regression
slope, 95% CI for the slope, the t statistic, degrees of freedom
and P value. Thus for the data in Table 11.1 we would write,
“regression slope of dead space against height is 1·033 ml/cm
(95% CI 0·643 to 1·422), P < 0·001, r = 0·846”.

Exercises
Exercise 11.1

A study was carried out into the attendance rate at a hospital of
people in 16 different geographical areas, over a fixed period of
time. The distance of the centre from the hospital of each area was
measured in miles. The results were as follows:

(1) 21%, 6·8; (2) 12%, 10·3; (3) 30%, 1·7; (4) 8%,
14·2; (5) 10%, 8·8; (6) 26%, 5·8; (7) 42%, 2·1;
(8) 31%, 3·3; (9) 21%, 4·3; (10) 15%, 9·0; (11) 19%,
3·2; (12) 6%, 12·7; (13) 18%, 8·2; (14) 12%, 7·0;
(15) 23%, 5·1; (16) 34%, 4·1

What is the correlation coefficient between the attendance rate
and mean distance of the geographical area?

Exercise 11.2 

Find the Spearman rank correlation for the data given in
Exercise 11.1.
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Exercise 11.3 

If the values of x from the data in Exercise 11.1 represent mean
distance of the area from the hospital and values of y represent
attendance rates, what is the equation for the regression of y on x?
What does it mean?

Exercise 11.4

Find the standard error and 95% confidence interval for
the slope.
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12 Survival analysis

Survival analysis is concerned with studying the time between
entry to a study and a subsequent event. Originally the analysis was
concerned with time from treatment until death, hence the name,
but survival analysis is applicable to many areas as well as mortality.
Recent examples include: time to discontinuation of a contraceptive,
maximum dose of bronchoconstrictor required to reduce a patient’s
lung function to 80% of baseline, time taken to exercise to maximum
tolerance, time that a transdermal patch can be left in place, and time
for a leg fracture to heal.

When the outcome of a study is the time between one event and
another, a number of problems can occur.

• The times are more unlikely to be Normally distributed.
• We cannot afford to wait until events have happened to all the

subjects, for example until all are dead. Some patients might
have left the study early—they are lost to follow up. Thus the only
information we have about some patients is that they were still
alive at the last follow up. These are termed censored observations.

Kaplan–Meier survival curve
We look at the data using a Kaplan–Meier survival curve.1

Suppose that the survival times, including censored observations,
after entry into the study (ordered by increasing duration) of a
group of n subjects are t1, t2, … , tn. The proportion of subjects,
S(t), surviving beyond any follow up time (tp) is estimated by

S(t) =
r1 − d1 ×

r2 − d2 × … ×
rp − dp

r1 r2 rp



Here tp is the largest survival time less than or equal to t; and ri

is the number of subjects alive just before time ti (the ith ordered
survival time), and di denotes the number who died at time ti ,
where i can be any value between 1 and p. For censored observations
di = 0.

Method

Order the survival times by increasing duration, starting with
the shortest one. At each event (i) work out the number alive
immediately before the event (ri). Before the first event all the
patients are alive and so S(t) = 1. If we denote the start of the study
as t0, where t0 = 0, then we have S(t0) = 1. We can now calculate
the survival times ti, for each value of i from 1 to n, by means of the
following recurrence formula.

Given the number of events (deaths), di, at time ti and the number
alive, ri, just before ti calculate

We do this only for the events and not for censored observations.
The survival curve is unchanged at the time of a censored
observation, but at the next event after the censored observation
the number of people “at risk” is reduced by the number censored
between the two events.

Example of calculation of survival curve
McIllmurray and Turkie2 describe a clinical trial of 49 patients for

the treatment of Dukes’ C colorectal cancer. The data for the two
treatments, γ-linolenic acid and a control, are given in Table 12.1.2,3

The calculation of the Kaplan–Meier survival curve for the 25
patients randomly assigned to receive γ-linolenic acid is described in
Table 12.2. The + sign indicates censored data. Until 6 months
after treatment, there are no deaths, so S(t) = 1. The effect of the
censoring is to remove from the alive group those that are censored.
At 6 months two subjects have been censored and so the number
alive just before 6 months is 23. There are two deaths at 6 months.
Thus,

S(6)  =
1 × (23 − 2)  

= 0·9130.
23 
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S(ti)  =
ri − di S(ti−1)ri



We now reduce the number alive (“at risk”) by 2. The censored
event at 9 months reduces the “at risk” set to 20. At 10 months
there are two deaths, so the proportion surviving is 18/20 = 0·90
and the cumulative proportion surviving is 0·913 × 0·90 = 0·8217.
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Table 12.1 Survival in 49 patients with Dukes’ C colorectal cancer
randomly assigned to either γ-linolenic acid or control treatment.

Treatment Survival time (months)

γ-linolenic acid 1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+,
(n = 25) 13+, 15+, 16+, 20+, 24, 24+, 27+, 32, 34+, 36+,

36+, 44+
Control 3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+,
(n = 24) 20, 22+, 24, 28+, 28+, 28+, 30, 30+, 33+, 42

Table 12.2 Calculation of survival case for 25 patients randomly assigned
to receive γ-linolenic acid.

Cumulative
Survival time Number Proportion proportion

Case (months) alive Deaths surviving surviving
(i) (ti) (ri) (di) (ri − di)/ri S(t)

0 0 0 – 1
1 1+ 25 0 1 1
2 5+ 24 0 1 1
3 6 23 2 0·9130 0·9130
4 6
5 9+ 21 0 1 0·9130
6 10 20 2 0·90 0·8217
7 10
8 10+
9 12 17 4 0·7647 0·6284

10 12
11 12
12 12
13 12+
14 13+ 12 0 1 0·6284
15 15+ 11 0 1 0·6284
16 16+ 10 0 1 0·6284
17 20+ 9 0 1 0·6284
18 24 8 1 0·875 0·5498
19 24+
20 27+ 6 0 1 0·5498
21 32 5 1 0·80 0·4399
22 34+
23 36+
24 36+
25 44+



The cumulative survival is conveniently stored in the memory of a
calculator. As one can see, the effect of the censored observations
is to reduce the number at risk without affecting the survival curve
S(t).

Finally we plot the survival curve, as shown in Figure 12.1. The
censored observations are shown as ticks on the line.

Log rank test
To compare two survival curves produced from two groups A

and B, we use the rather curiously named log rank test,1 so called
because it can be shown to be related to a test that uses the
logarithms of the ranks of the data.

The assumptions used in this test are as follows:

• The survival times are ordinal or continuous.
• The risk of an event in one group relative to the other does not

change with time. Thus if γ-linolenic acid reduces the risk of
death in patients with colorectal cancer, then this risk reduction
does not change with time (the so called proportional hazards
assumption).
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Figure 12.1 Survival curve of 25 patients with Dukes’ C colorectal cancer
treated with γ-linolenic acid.



We first order the data for the two groups combined, as shown
in Table 12.3 for the patients with colorectal cancer. As for the
Kaplan–Meier survival curve, we now consider each event in turn,
starting at time t = 0. At each event (death) at time ti we consider
the total number alive (ri) and the total number still alive in group
A (rAi) up to that point. If we had a total of di events at time ti, then,
under the null hypothesis, we consider what proportion of these
would have been expected in group A. Clearly, the more people at
risk in one group the more deaths (under the null hypothesis) we
would expect. Thus the expected number of events in A is

The effect of the censored observations is to reduce the numbers
at risk, but they do not contribute to the expected numbers.

Finally, we add the total number of expected events in group A,

EA =
∑

EAi.

If the total number of events in group B is EB, we can deduce EB

from EB = n − EA. We do not calculate the expected number beyond
the last event, in this case at time 42 months. Also, we would stop
calculating the expected values if any survival times greater than
the point we were at were found in one group only.

Now, to test the null hypothesis of equal risk in the two groups
we compute

where OA and OB are the total number of events in groups A and
B. We compare X 2 to a χ2 distribution with one degree of freedom
(one, because we have two groups and one constraint, namely that
the total expected events must equal the total observed).

The calculation for the colorectal data is given in Table 12.3. The
first non-censored event occurs at 6 months, at which there are six
events. By that time 46 patients are at risk, of whom 23 are in group
A. Thus we would expect 6 × 23/46 = 3 to be in group A. At
8 months we have 46 − 6 = 40 patients at risk of whom 23 − 2 = 21
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EAi = 
rAi di .ri

X 2 =
(OA − EA)2

+
(OB − EB)2

EA EB



are in group A. There are two events, of which we would expect
2 × 21/40 = 1·05 to occur in group A.

The total expected number of events in A is EA = 11·3745. The
total number of events is 22, OA = 10, OB = 12. Thus EB = 10·6255.
Thus

We compare this with the χ2 table given in Table C in the
Appendix, to find that P > 0·10 (precise P = 0·56).

The relative risk can be estimated by

r = (OA/EA)/(OB/EB).

The standard error of the log risk is given by4

Thus we find r = 0·779, and so log(r) = −0·250. SE(log(r)) = 0·427,
and so an approximate 95% confidence interval for log(r) is

− 1·087 to 0·587 

A 95% confidence interval for r is therefore e−1·087 to e0·587, which is

0·34 to 1·80.

This would imply that γ-linolenic acid reduced mortality by
about 78% compared with the control group, but with a very wide
confidence interval. In view of the very small χ2 statistic, we have
little evidence that this result would not have arisen by chance.

Further methods
In the same way that multiple regression is an extension of linear

regression, an extension of the log rank test is called Cox regression.
This was developed by DR Cox and allows for prognostic factors.
It is beyond the scope of this book, but is described elsewhere.4–6
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X 2 =
(10 − 11·37)2

+
(12 − 10·63)2

=  0·34
11·37                10·63

SE(log(r)) = (1/EA + 1/EB).
√
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Table 12.3 Calculation of log rank statistics for 49 patients randomly
assigned to receive γ-linolenic acid (A) or control (B)

Expected 
Total Number Total at risk number of

Survival time at risk of events in group A events in A
months(ti) Group (r) (di) (rAi) (EAi)

0 49
1+ A 49 0 25 0
3+ B 48 0 24 0
5+ A 47 0 24 0
6 A 46 6 23 3·0
6 A
6 B
6 B
6 B
6 B
8 B 40 2 21 1·05
8 B
9+ A 38 0 21 0

10 A 37 2 20 1·0811
10 A
10+ A
12 A 34 6 17 3·0
12 A
12 A
12 A
12 B
12 B
12+ A
12+ B
13+ A 26 0 12 0
15+ A 25 0 11 0
15+ B 24 0 10 0
16+ A 23 0 10 0
16+ B 22 0 9 0
18+ B 21 0 9 0
18+ B
20 B 19 1 9 0·4736
20+ A
22+ B 17 0 8 0
24 A 16 2 8 1·0
24 B
24+ A
27+ A 13 0 6 0
28+ B 12 0 5 0
28+ B
28+ B
30 B 9 1 5 0·5555
30+ B
32 A 7 1 5 0·7143
33+ B 6 0 4 0
34+ A 5 0 4 0
36+ A 4 0 3 0
36+ A
42 B 2 1 1 0·50
44+ A



Common questions
Do I need to test for a constant relative
risk before doing the log rank test?

This is a similar problem to testing for Normality for a t test. The
log rank test is quite “robust” against departures from proportional
hazards, but care should be taken. If the Kaplan–Meier survival
curves cross then this is a clear departure from proportional hazards,
and the log rank test should not be used. This can happen, for
example, in a two drug trial for cancer, if one drug is very toxic
initially but produces more long term cures. In this case there is no
simple answer to the question “is one drug better than the other?”,
because the answer depends on the time scale.

If I don’t have any censored observations,
do I need to use survival analysis?

Not necessarily, you could use a rank test such as the Mann–
Whitney U test, but the survival method would yield an estimate
of risk, which is often required, and lends itself to a useful way of
displaying the data.

Reading and reporting survival analysis
• Beware of reading too much into the right hand part of a

Kaplan–Meier plot, unless you have data to show that there is
still a reasonably sized sample there, since it may be based on
very small numbers. It is useful to print the numbers at risk at
intervals along the survival time axis.

• For survival curves with a high proportion of survivors, it is
helpful to truncate the vertical axis, and not plot acres of white
space.

• Relative risks are difficult to interpret, and for communication
it can be helpful to choose a time (say, 2 years for the γ-linolenic
acid data) and give the estimated proportions surviving at that
point.

• The log rank test should be presented as “X 2(log rank) = 0·34,
d.f. = 1, P = 0·56. Estimated relative risk 0·78, 95% CI 0·34
to 1·80.”
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Exercises
Exercise 12.1

Twenty patients, ten of normal weight and ten severely
overweight, underwent an exercise stress test, in which they had to
lift a progressively increasing load for up to 12 minutes, but they
were allowed to stop earlier if they could do no more. On two
occasions the equipment failed before 12 minutes. The times (in
minutes) achieved were:

Normal weight: 4, 10, 12*, 2, 8, 12*, 8†, 6, 9, 12*

Overweight: 7†, 5, 11, 6, 3, 9, 4, 1, 7, 12*

An asterisk denotes that the end of the test was reached, and a
dagger denotes equipment failure. (I am grateful to C Osmond for
these data.) What are the observed and expected values? What is
the value of the log rank test to compare these groups?

Exercise 12.2

What is the risk of stopping in the normal weight group
compared with the overweight group? Give a 95% confidence
interval.
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13 Study design and
choosing a
statistical test

Design
In many ways the design of a study is more important than the
analysis. A badly designed study can never be retrieved, whereas a
poorly analysed one can usually be reanalysed.1 Consideration of
design is also important because the design of a study will govern
how the data are to be analysed.

Most medical studies consider an input, which may be a medical
intervention or exposure to a potentially toxic compound, and an
output, which is some measure of health that the intervention is
supposed to affect. The simplest way to categorise studies is with
reference to the time sequence in which the input and output are
studied.

The most powerful studies are prospective studies, and the
paradigm for these is the randomised controlled trial. In this, subjects
with a disease are randomised to one of two (or more) treatments,
one of which may be a control treatment. Methods of randomisation
have been described in Chapter 3. The importance of randomisation
is that we know that in the long run (that is, with a large number of
subjects) treatment groups will be balanced in known and unknown
prognostic factors. However, with small studies the chances of
imbalance in some important prognostic factors are quite high.
Another important feature of randomisation is that one cannot
predict in advance which treatment a patient will receive. This
matters, because knowledge of likely treatment may affect whether
the subject is recruited into the trial. It is important that the
treatments are concurrent—that the active and control treatments
occur in the same period of time.
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To allow for the therapeutic effect of simply being given treatment,
the control may consist of a placebo, an inert substance that is
physically identical to the active compound. If possible a study
should be double blinded—neither the investigator nor the subject
being aware of what treatment the subject is undergoing.
Sometimes it is impossible to blind the subjects, for example when
the treatment is some form of health education, but often it is
possible to ensure that the people evaluating the outcome are
unaware of the treatment.

A parallel group design is one in which treatment and control are
allocated to different individuals. Examples of a parallel group trial
are given in Table 7.1, in which different bran preparations have
been tested on different individuals, Table 8.5 comparing different
vaccines and Table 8.7 evaluating health promotion. A matched
parallel design comes about when randomisation is between
matched pairs, such as in Exercise 6.3, in which randomisation
was between different parts of a patient’s body.

A crossover study is one in which two or more treatments are
applied sequentially to the same subject. Clearly this type of study
can only be considered for chronic conditions, where treatment is
not expected to cure the patient and where withdrawal of treatment
leads to a return to a baseline level which is relatively stable. The
advantages are that each subject then acts as his or her own control
and so fewer subjects may be required. The main disadvantage
is that there may be a carryover effect in that the action of the
second treatment is affected by the first treatment. An example of
a crossover trial is given in Table 7.2, in which different dosages of
bran are compared within the same individual. Another type of trial
is a sequential trial, where the outcome is evaluated after each patient
or a group of patients, rather than after all the patients have been
gathered into the study. It is useful if patient recruitment is slow
and the outcome evaluated quickly, as for levels of nausea after an
anaesthetic. Cluster trials are trials where groups of patients, rather
than individual patients, are randomised. They may occur in primary
care, where general practitioners are randomised to different training
packages, or public health, where different areas receive different
health promotion campaigns. Further details on clinical trials are
available in a number of excellent books.2–5

One of the major threats to validity of a clinical trial is compliance.
Patients are likely to drop out of trials if the treatment is unpleasant,
and often fail to take medication as prescribed. It is usual to adopt
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a pragmatic approach and analyse by intention to treat, that is,
analyse the data by the treatment that the subject was assigned to,
not the one they actually took. Of course, if the patients have
dropped out of a trial, it may be impossible to get measurements
from them, unless they can be obtained by proxy, such as whether
the subject is alive or dead. The alternative to an intention to treat
analysis is to analyse per protocol or on study. The trouble with this
type of analysis is that we no longer have a randomised comparison
and so comparisons may be biased. Dropouts should be reported
by treatment group. Checklists for writing reports on clinical trials
are available.6,7

A quasi-experimental design is one in which treatment allocation
is not random. An example of this is given in Table 9.1 in which
injuries are compared in two dropping zones. This is subject to
potential biases in that the reason why a person is allocated to a
particular dropping zone may be related to their risk of a sprained
ankle. If all the novices jumped together in one dropping zone, this
alone may explain the difference in injury rates.

A cohort study is one in which subjects, initially free of disease,
are followed up over a period of time. Some will be exposed to
some risk factor, for example cigarette smoking. The outcome may
be death, and we may be interested in relating the risk factor to a
particular cause of death. Clearly, these have to be large, long term
studies and tend to be costly to carry out. If records have been kept
routinely in the past then a historical cohort study may be carried
out, an example of which is the appendicitis study discussed in
Chapter 6. Here, the cohort is all cases of appendicitis admitted
over a given period, and a sample of the records could be inspected
retrospectively. A typical example would be to look at birth weight
records and relate birth weight to disease in later life.

These studies differ in essence from retrospective studies, which
start with diseased subjects and then examine possible exposure.
Such case–control studies are commonly undertaken as a preliminary
investigation, because they are relatively quick and inexpensive.
The comparison of the blood pressure in farmers and printers given
in Chapter 3 is an example of a case–control study. It is retrospective
because we argued from the blood pressure to the occupation and
did not start out with subjects assigned to occupation. There are
many confounding factors in case–control studies. For example,
does occupational stress cause high blood pressure, or do people
prone to high blood pressure choose stressful occupations?
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A particular problem is recall bias, in that the cases, with the disease,
are more motivated to recall apparently trivial episodes in the past
than controls, who are disease free.

Cross–sectional studies are common and include surveys,
laboratory experiments and studies to examine the prevalence of
a disease. Studies validating instruments and questionnaires are
also cross–sectional studies. The study of urinary concentration
of lead in children described in Chapter 1 and the study of the
relationship between height and pulmonary anatomical dead space
in Chapter 11 are cross–sectional studies. The main problem of
cross–sectional studies is ensuring the sample is representative of
the population from which it is taken. Different types of sample are
described in Chapter 3.

Sample size
One of the most common questions asked of a statistician about

design is the number of patients to include. It is an important
question, because if a study is too small it will not be able to
answer the question posed, and would be a waste of time and
money. It could also be deemed unethical because patients may be
put at risk with no apparent benefit. However, studies should not
be too large because resources would be wasted if fewer patients
would have sufficed. The sample size for a continuous outcome
depends on four critical quantities: the type I and type II error
rates α and β, (discussed in Chapter 5), the variability of the data
σ2, and the effect size d. In a trial the effect size is the amount by
which we would expect the two treatments to differ, or is the
minimum difference that would be clinically worthwhile. For a
binary outcome we need to specify α and β, and proportions
P1 and P2 where P1 is the expected outcome under the control
intervention and P1 − P2 is the minimum clinical difference which
it is worthwhile detecting.

Usually α and β are fixed at 5% and 20% (or 10%), respectively.
A simple formula for a two group parallel trial with a continuous
outcome is that the required sample size per group is given by n =
16σ2/d 2 for two sided α of 5% and β of 20%. For example, in a trial
to reduce blood pressure, if a clinically worthwhile effect for diastolic
blood pressure is 5 mmHg and the between subjects standard
deviation is 10 mmHg, we would require n = 16 × 100/25 = 64
patients per group in the study. For binary data this becomes
8 (P1(1 − P1) + P2(1 − P2))/(P1 − P2)

2. Thus suppose that in the
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PHVD trial of Chapter 2 the standard therapy resulted in 45% of
children requiring a shunt or dying. We wished to reduce this to
35%. In the formula we express the percentages as proportions.
Then we would require 8 × (0·45 × 0·55 + 0·35 × 0·65)/0·12 = 380
subjects per group to have an 80% chance of detecting the specified
difference at 5% significance. The sample size goes up as the square
of the standard deviation of the data (the variance) and goes down
as the square of the effect size. Doubling the effect size reduces the
sample size by a factor of 4—it is much easier to detect large effects!
In practice, the sample size is often fixed by other criteria, such as
finance or resources, and the formula is used to determine a realistic
effect size. If this is too large, then the study will have to be
abandoned or increased in size. Machin et al. give advice on a sample
size calculations for a wide variety of study designs.8 There are also
a number of websites that allow free sample size calculations, for
example http://www.stat.uiowa.edu/~rlenth/Power/index.html.

Choice of test
In terms of selecting a statistical test, the most important

question is “what is the main study hypothesis?”. In some cases
there is no hypothesis; the investigator just wants to “see what is
there”. For example, in a prevalence study there is no hypothesis
to test, and the size of the study is determined by how accurately
the investigator wants to determine the prevalence. If there is no
hypothesis, then there is no statistical test. It is important to decide
a priori which hypotheses are confirmatory (that is, are testing
some presupposed relationship), and which are exploratory (are
suggested by the data). No single study can support a whole series
of hypotheses.

A sensible plan is to limit severely the number of confirmatory
hypotheses. Although it is valid to use statistical tests on hypotheses
suggested by the data, the P values should be used only as
guidelines, and the results treated as very tentative until confirmed
by subsequent studies. A useful guide is to use a Bonferroni
correction, which states simply that if one is testing n independent
hypotheses, one should use a significance level of 0·05/n. Thus if
there were two independent hypotheses a result would be declared
significant only if P < 0·025. Note that, since tests are rarely
independent, this is a very conservative procedure—one unlikely to
reject the null hypothesis.
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The investigator should then ask “are the data independent?”.
This can be difficult to decide but, as a rule of thumb, results on the
same individual, or from matched individuals, are not independent.
Thus results from a crossover trial, or from a case–control study in
which the controls were matched to the cases by age, sex and social
class, are not independent. It is generally true that the analysis
should reflect the design, and so a matched design should be
followed by a matched analysis. Results measured over time require
special care.9 One of the most common mistakes in statistical
analysis is to treat correlated variables as if they were independent.
For example, suppose we were looking at treatment of leg ulcers,
in which some people had an ulcer on each leg. We might have
20 subjects with 30 ulcers, but the number of independent pieces
of information is 20 because the state of ulcers on each leg for one
person may be influenced by the state of health of the person and
an analysis that considered ulcers as independent observations
would be incorrect. For a correct analysis of mixed paired and
unpaired data, consult a statistician.

The next question is “what types of data are being measured?”.
The test used should be determined by the data. The choice of
test for matched or paired data is described in Table 13.1 and for
independent data in Table 13.2.

It is helpful to decide the input variables and the outcome
variables. For example, in a clinical trial the input variable is the
type of treatment—a nominal variable—and the outcome may be
some clinical measure, perhaps Normally distributed. The required
test is then the t test (Table 13.2). However, if the input variable is
continuous, say a clinical score, and the outcome is nominal, say
cured or not cured, logistic regression is the required analysis. A t
test in this case may help but would not give us what we require,
namely the probability of a cure for a given value of the clinical
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Table 13.1 Choice of statistical test from paired or
matched observations.

Variable Test

Nominal McNemar’s test
Ordinal (ordered categories) Wilcoxon
Quantitative (discrete or non-Normal) Wilcoxon
Quantitative (Normal*) Paired t test

* It is the difference between the paired observations that should
be plausibly Normal.
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score. As another example, suppose we have a cross-sectional
study in which we ask a random sample of people whether they
think their general practitioner is doing a good job, on a five point
scale, and we wish to ascertain whether women have a higher
opinion of general practitioners than men have. The input variable
is gender, which is nominal. The outcome variable is the five point
ordinal scale. Each person’s opinion is independent of the others,
so we have independent data. From Table 13.2 we should use a χ2

test for trend, or a Mann–Whitney U test (with correction for ties).
Note, however, that if some people share a general practitioner and
others do not, then the data are not independent and a more
sophisticated analysis is called for.

Note that Tables 13.1 and 13.2 should be considered as guides
only, and each case should be considered on its merits.

Reading and reporting on the
design of a study
• There should always be a succinct statement in the abstract of

a report stating the type of study, for example ‘a case–control
study of 50 cases and 60 controls’.

• The sample size should be justified by a power-based statement
in the methods section. Note that this should be written down
before the study is carried out. Retrospective power calculations,
saying what the power would have been, are not helpful; use a
confidence interval instead.

• It should be possible to assign a statistical method to each P
value quoted.

Exercises
State the type of study described in each of the following.

Exercise 13.1

To investigate the relationship between egg consumption and heart
disease, a group of patients admitted to hospital with myocardial
infarction were questioned about their egg consumption. A group of
patients matched by age and sex admitted to a fracture clinic were
also questioned about their egg consumption using an identical
protocol.
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Exercise 13.2 

To investigate the relationship between certain solvents and
cancer, all employees at a factory were questioned about their
exposure to an industrial solvent, and the amount and length of
exposure measured. These subjects were regularly monitored, and
after 10 years a copy of the death certificate for all those who had
died was obtained.

Exercise 13.3

A survey was conducted of all nurses employed at a particular
hospital. Among other questions, the questionnaire asked about
the grade of the nurse and whether she was satisfied with her career
prospects.

Exercise 13.4 

To evaluate a new back school, patients with lower back pain
were randomly allocated to either the new school or to conventional
occupational therapy. After 3 months they were questioned about
their back pain, and observed lifting a weight by independent
monitors.

Exercise 13.5 

A new triage system has been set up at the local accident and
emergency unit. To evaluate it the waiting times of patients were
measured for 6 months and compared with the waiting times at a
comparable nearby hospital.
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Answers to exercises

1.1 Median 0·71, range 0·10 to 1·24, first quartile 0·535, third
quartile 0·84 µmol/24 h.

2.1 Mean = 2·41, SD = 1·27. No, because the mean is less than
2 SDs and data are positive.

2.2 Mean = 0·697 µmol/24 h, SD = 0·2410 µmol/24 h, range
0·215 to 1·179 µmol/24 h. Points 0·10 and 1·24. 2/40 or 5%.

2.3 Relative risk 1·79, odds ratio 2·09.
3.1 SE(mean) = 0·074 µmol/24 h.
3.2 A uniform or flat distribution. Population mean 4·5, population

SD 2·87.
3.3 The distribution will be approximately Normal, mean 4·5

and SD 2·87/√ 5 = 1·28.
4.1 The reference range is 12·26 to 57·74, and so the observed

value of 52 is included in it.
4.2 95% confidence interval 32·73 to 37·27.
5.1 0·42 g/dl, z = 3·08, 0·001 < P < 0·01, difference = 1·3 g/dl,

95% CI 0·48 to 2·12 g/dl.
5.2 0·23 g/dl, P < 0·001.
6.1 SE (percentage) = 2·1%, SE (difference) = 3·7%, difference =

3·4%. 95% CI − 3·9 to 10·7%, z = 0·94, P = 0·35.
6.2 Difference in proportions 0·193, 95% CI 0·033 to 0·348.
6.3 Yes, the traditional remedy, z = 2·2, P = 0·028.
6.4 OR = 4·89, 95% CI 4·00 to 5·99.
7.1 37·5 to 40·5 KA units.
7.2 t = 2·652, d.f. = 17, 0·01< P < 0·02 (P = 0·017).
7.3 0·56 g/dl, t = 1·243, d.f. = 20, 0·1 < P < 0·5 (P = 0·23), 95%

CI − 0·38 to 1·50 g/dl.
7.4 15 days, t = 1·758, d.f. = 9, 0·1 < P < 0·5 (P = 0·11), 95%

CI − 4·30 to 34·30 days.
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8.1 Standard χ2 = 3·295, d.f. = 4, P = 0·51. Trend χ2 = 2·25,
d.f. = 1, P = 0·13.

8.2 X 2 = 3·916, d.f. = 1, 0·02 < P < 0·05, (P = 0·048) difference
in rates 9%, 95% CI 0·3 to 17·9%.

8.3 X 2 = 0·931, d.f. = 1, 0·1 < P < 0·5 (P = 0·33), difference in
rates 15%, 95% CI − 7·7 to 38%.

8.4 X 2 = 8·949, d.f. = 3, 0·02 < P < 0·05 (P = 0·03). Yes,
practice C; if this is omitted the remaining practices give
X2 = 0·241, d.f. = 2, P = 0·89. (Both χ2 tests by quick method.)

8.5 X 2 = 5·685, d.f. = 1, P = 0·017. This is statistically
significant and the CI in (6·2) does not include zero.

8.6 X 2 = 285·96, d.f. = 1, P < 0·001. Highly significant and the
CI in (6.4) is a long way from 1.

8.7 X 2 = 0·6995, d.f. = 1, P = 0·40. The z value was 0·83 and
0.83 × 0·83=0·6889, which is the same within the limits of
rounding.

9.1 Sickness rate in first department = 28%, in second department
8%, difference 20% (approximate 95% CI = −6 to 45%,
P = 0·24 (Fisher’s exact test mid P)). P is calculated from
2 × (0·5 × 0·173 + 0·031).

10.1 Smaller total = − 24. No.
10.2 Mann–Whitney statistic = 74.  The group on the new

remedy. No.
11.1 r = − 0·848.
11.2 rs = − 0·865.
11.3 y = 36·1 − 2·34x. This means that, on average, for every

1 mile increase in mean distance the attendance rate drops
by 2·34%. This can be safely accepted only within the area
measured here.

11.4 SE = 0·39, 95% CI = −2·34 − 2·145 × 0·39 to − 2·34 + 2·145 ×
0·39 = − 3·2 to − 1·5%.

12.1 OA = 6, EA = 8·06, OB = 8, EB = 5·94. Log rank X 2 = 1·24,
d.f. = 1, 0·1 < P < 0·5 (P = 0·27).

12.2 Risk = 0·55, 95% CI 0·19 to 1·60.
13.1 Matched case–control study.
13.2 Cohort study.
13.3 Cross–sectional study.
13.4 Randomised controlled trial.
13.5 Quasi–experimental design.
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Table A Probabilities related to multiples of standard deviations for a
normal distribution

Number of standard Probability of getting an observation at least as far
deviations (z) from the mean (two sided P)

0·0 1·00
0·1 0·92
0·2 0·84
0·3 0·76
0·4 0·69
0·5 0·62
0·6 0·55
0·674 0·500

0·7 0·48
0·8 0·42
0·9 0·37
1·0 0·31
1·1 0·27
1·2 0·23
1·3 0·19
1·4 0·16
1·5 0·13
1·6 0·11
1·645 0·100
1·7 0·089
1·8 0·072
1·9 0·057
1·96 0·050

2·0 0·045
2·1 0·036
2·2 0·028
2·3 0·021
2·4 0·016
2·5 0·012
2·576 0·010

3·0 0·0027
3·291 0·0010

P/2

Z0− Z

P/2
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Table B Distribution of t (two tailed)

Probability

d.f. 0·5 0·1 0·05 0·02 0·01 0·001

1 1·000 6·314 12·706 31·821 63·657 636·619
2 0·816 2·920 4·303 6·965 9·925 31·598
3 0·765 2·353 3·182 4·541 5·841 12·941
4 0·741 2·132 2·776 3·747 4·604 8·610
5 0·727 2·015 2·571 3·365 4·032 6·859

6 0·718 1·943 2·447 3·143 3·707 5·959
7 0·711 1·895 2·365 2·998 3·499 5·405
8 0·706 1·860 2·306 2·896 3·355 5·041
9 0·703 1·833 2·262 2·821 3·250 4·781

10 0·700 1·812 2·228 2·764 3·169 4·587

11 0·697 1·796 2·201 2·718 3·106 4·437
12 0·695 1·782 2·179 2·681 3·055 4·318
13 0·694 1·771 2·160 2·650 3·012 4·221
14 0·692 1·761 2·145 2·624 2·977 4·140
15 0·691 1·753 2·131 2·602 2·947 4·073

16 0·690 1·746 2·120 2·583 2·921 4·015
17 0·689 1·740 2·110 2·567 2·898 3·965
18 0·688 1·734 2·101 2·552 2·878 3·922
19 0·688 1·729 2·093 2·539 2·861 3·883
20 0·687 1·725 2·086 2·528 2·845 3·850

21 0·686 1·721 2·080 2·518 2·831 3·819
22 0·686 1·717 2·074 2·508 2·819 3·792
23 0·685 1·714 2·069 2·500 2·807 3·767
24 0·685 1·711 2·064 2·492 2·797 3·745
25 0·684 1·708 2·060 2·485 2·787 3·725

26 0·684 1·706 2·056 2·479 2·779 3·707
27 0·684 1·703 2·052 2·473 2·771 3·690
28 0·683 1·701 2·048 2·467 2·763 3·674
29 0·683 1·699 2·045 2·462 2·756 3·659
30 0·683 1·697 2·042 2·457 2·750 3·646

40 0·681 1·684 2·021 2·423 2·704 3·551
60 0·679 1·671 2·000 2·390 2·660 3·460

120 0·677 1·658 1·980 2·358 2·617 3·373
∞ 0·674 1·645 1·960 2·326 2·576 3·291

Adapted by permission of the authors and publishers from Table III of Fisher and
Yates: Statistical Tables for Biological, Agricultural and Medical Research, published by
Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh).
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Table C Distribution  of  χ2

Probability

d.f. 0·50 0·10 0·05 0·02 0·01 0·001

1 0·455 2·706 3·841 5·412 6·635 10·827
2 1·386 4·605 5·991 7·824 9·210 13·815
3 2·366 6·251 7·815 9·837 11·345 16·268
4 3·357 7·779 9·488 11·668 13·277 18·465
5 4·351 9·236 11·070 13·388 15·086 20·517

6 5·348 10·645 12·592 15·033 16·812 22·457
7 6·346 12·017 14·067 16·622 18·475 24·322
8 7·344 13·362 15·507 18·168 20·090 26·125
9 8·343 14·684 16·919 19·679 21·666 27·877

10 9·342 15·987 18·307 21·161 23·209 29·588

11 10·341 17·275 19·675 22·618 24·725 31·264
12 11·340 18·549 21·026 24·054 26·217 32·909
13 12·340 19·812 22·362 25·472 27·688 34·528
14 13·339 21·064 23·685 26·873 29·141 36·123
15 14·339 22·307 24·996 28·259 30·578 37·697

16 15·338 23·542 26·296 29·633 32·000 39·252
17 16·338 24·769 27·587 30·995 33·409 40·790
18 17·338 25·989 28·869 32·346 34·805 42·312
19 18·338 27·204 30·144 33·687 36·191 43·820
20 19·337 28·412 31·410 35·020 37·566 45·315

21 20·337 29·615 32·671 36·343 38·932 46·797
22 21·337 30·813 33·924 37·659 40·289 48·268
23 22·337 32·007 35·172 38·968 41·638 49·728
24 23·337 33·196 36·415 40·270 42·980 51·179
25 24·337 34·382 37·652 41·566 44·314 52·620

26 25·336 35·563 38·885 42·856 45·642 54·052
27 26·336 36·741 40·113 44·140 46·963 55·476
28 27·336 37·916 41·337 45·419 48·278 56·893
29 28·336 39·087 42·557 46·693 49·588 58·302
30 29·336 40·256 43·773 47·962 50·892 59·703

Adapted by permission of the authors and publishers from Table IV of Fisher and
Yates: Statistical Tables for Biological, Agricultural and Medical Research, published by
Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh).
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Table D Wilcoxon test on paired samples: 5% and 1% levels of P

Number of pairs 5% Level 1% Level

7 2 0
8 2 0
9 6 2

10 8 3
11 11 5
12 14 7
13 17 10
14 21 13
15 25 16
16 30 19

Reprinted (slightly abbreviated) by permission of the publisher  from Statistical
Methods, 6th edition, by George W Snedecor and William G Cochran (copyright),
1967, Iowa State University Press, Ames, Iowa, USA.

Table E Mann–Whitney test on unpaired samples: 5% and 1% levels
of P
5% critical points of rank sums

n1→
n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓

4 10
5 6 11 17
6 7 12 18 26
7 7 13 20 27 36
8 3 8 14 21 29 38 49
9 3 8 15 22 31 40 51 63

10 3 9 15 23 32 42 53 65 78
11 4 9 16 24 34 44 55 68 81 96
12 4 10 17 26 35 46 58 71 85 99 115
13 4 10 18 27 37 48 60 73 88 103 119 137
14 4 11 19 28 38 50 63 76 91 106 123 141 160
15 4 11 20 29 40 52 65 79 94 110 127 145 164 185
16 4 12 21 31 42 54 67 82 97 114 131 150 169
17 5 12 21 32 43 56 70 84 100 117 135 154
18 5 13 22 33 45 58 72 87 103 121 139
19 5 13 23 34 46 60 74 90 107 124
20 5 14 24 35 48 62 77 93 110
21 6 14 25 37 50 64 79 95
22 6 15 26 38 51 66 82
23 6 15 27 39 53 68
24 6 16 28 40 55
25 6 16 28 42
26 7 17 29
27 7 17
28 7
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1% Critical points of rank sums

n1→
n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓

5 15
6 10 16 23
7 10 17 24 32
8 11 17 25 34 43
9 6 11 18 26 35 45 56

10 6 12 19 27 37 47 58 71
11 6 12 20 28 38 49 61 74 87
12 7 13 21 30 40 51 63 76 90 106
13 7 14 22 31 41 53 65 79 93 109 125
14 7 14 22 32 43 54 67 81 96 112 129 147
15 8 15 23 33 44 56 70 84 99 115 133 151 171
16 8 15 24 34 46 58 72 86 102 119 137 155
17 8 16 25 36 47 60 74 89 105 122 140
18 8 16 26 37 49 62 76 92 108 125
19 3 9 17 27 38 50 64 78 94 111
20 3 9 18 28 39 52 66 81 97
21 3 9 18 29 40 53 68 83
22 3 10 19 29 42 55 70
23 3 10 19 30 43 57
24 3 10 20 31 44
25 3 11 20 32
26 3 11 21
27 4 11
28 4

n1 and n2 are the numbers of cases in the two groups. If the groups are unequal in
size, n1 refers to the smaller.
Reproduced by permission of the author and publisher from White C, Biometrics
1952;8:33.
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Table F Random numbers

35368 65415 14425 97294 44734 54870 84495 39332 72708 52000 02219 86130 30264 56203 26518
93023 53965 19527 72819 42973 38037 37056 13200 09831 41367 40828 25938 05655 99010 88115
92226 65530 10966 29733 73902 19009 74733 68041 83166 92796 64846 79200 38776 09312 72234
15542 85361 44069 61445 82994 45169 79458 52221 37132 67125 62700 83475 99850 31670 50750
96424 65745 74877 48473 54281 67837 11167 74898 83136 10498 10660 65810 16373 80382 21874
17946 97751 54049 83077 03256 51947 88278 23891 53495 07101 95811 73035 83017 18532 59650
71495 36712 01513 30802 47228 52799 97961 82519 22756 69151 09052 38681 38858 38807 02422
16762 98574 78301 62647 29247 22936 62778 56694 70597 48880 33162 76138 97425 78283 42063
37969 66660 77823 54923 75832 99974 13868 94446 99521 44775 76649 00502 73424 21068 87880
25471 88920 39906 81436 70910 02631 93238 41952 87493 33559 64733 24688 78583 31506 24845
68507 79643 15204 84794 60093 29874 61851 05751 21960 70131 42137 73723 19252 23912 77751
67385 88293 46249 53036 47309 68803 15155 28222 06764 92367 25490 18494 42546 75268 05988
58948 40572 79817 40486 40494 20843 07388 74732 71655 17445 28489 84528 93922 67324 59120
70476 23299 17965 93629 28988 82399 81811 86373 91600 99962 28784 77326 24912 81992 66011
72887 41730 95940 54210 58480 96724 41954 91803 43078 85644 50014 93038 56037 79787 10707
70205 26256 91417 78629 16268 47156 32065 54588 74250 24739 04128 53966 74106 70159 80428
78883 36361 28182 51842 61426 27799 75951 58854 77236 04606 26949 56428 28495 41766 50059
89970 55101 66660 36953 02774 45020 54988 19226 44811 96941 70693 68847 07633 22289 94290
34382 04274 02116 37857 72075 90908 56584 67907 15075 63216 49006 24748 34289 55142 91206
16999 91140 64818 23018 09217 46068 32467 63844 72589 35456 44840 90800 50692 33298 74323
16329 39676 37510 35590 45888 77371 58301 79434 17500 48320 08953 18242 15133 24137 07323
31983 83436 93006 12640 00403 91457 62602 12245 27670 61492 89166 69421 79505 47104 50817
92780 80153 81458 82215 71536 03586 44007 85679 68186 85375 15373 57441 10034 74455 18466
70834 75678 78777 79731 06046 02386 18059 89623 65480 69345 49447 10358 74307 68861 87853
10100 85365 77687 36241 87563 06298 81828 40194 30647 36237 17793 50680 63701 39522 86006
84265 60501 17148 13657 40775 64773 62103 16356 99405 08598 81881 62732 36765 11895 63933
74041 62109 30831 62133 29462 30144 62081 79158 09737 72614 74806 25554 50911 43289 30344
02882 45141 58967 19688 48208 65679 18296 19080 03529 46017 33799 45518 31075 39740 93387
67647 56443 57816 49471 23525 76582 30085 90312 07397 42747 04242 58569 80087 45598 34374
99668 68326 47357 94812 65654 01097 55260 80990 46748 06416 93919 64520 54666 82278 59328
12013 30983 00370 40243 44457 18279 69740 39061 00548 21321 11249 48478 14917 26056 89506
55581 69068 66561 75671 07363 22939 93007 45319 48358 27534 60873 51076 20823 28185 49038
74957 53949 40414 15035 90232 28946 78073 75923 43081 16030 32935 30947 64395 03271 21345
65073 60950 92314 02037 82817 33518 49680 20095 51301 91889 78488 75298 29067 11355 69994
05110 83292 51335 64460 37648 72915 99688 62628 41297 36039 04436 82738 76614 55630 35803
54053 98104 12386 15646 89759 55889 14513 96192 19957 06186 40853 38011 97401 04047 66722
52351 72086 70257 83693 62924 79060 79683 03143 10627 45371 78404 50185 67515 65094 91111
10759 18901 07590 07727 37140 95782 41994 71688 72341 73665 66833 14138 20949 91852 42847
67322 87517 27043 12936 81043 27338 81679 88420 28220 65441 55517 96640 60178 84161 64239
37634 07842 34936 26836 48230 52786 01114 61335 39149 34268 70089 93491 91616 22522 06577
90556 62996 52252 42541 12781 40917 41661 96994 88818 93137 45130 34502 40479 65832 79294
07067 12854 23166 49012 56479 22674 69603 47846 91920 19188 94206 30370 50741 79932 88916
82945 28472 46267 45857 67101 39905 25753 75462 87523 01394 10135 26758 88652 34480 37901
33399 81517 64127 82407 23689 46598 23814 89327 87057 67715 30785 58496 38661 23259 19631
51428 25572 62696 33117 66242 11735 68466 90598 30201 25770 96006 48256 60967 49546 74989
45246 23347 48896 15828 69240 93948 27855 21999 19155 72859 78754 40094 39323 37570 73953
24384 49141 78464 73448 78883 25730 24813 36087 47883 50473 38354 25620 08787 61463 95219
43550 53461 42673 12646 87988 01411 58160 76833 53423 45490 23316 84940 81917 52712 10575
67691 02660 28326 46648 00840 02753 12403 29024 03017 28175 23557 64382 71324 17581 63090
49360 13426 04763 85671 40498 18689 99523 50400 00562 02112 00219 84376 42585 90350 96349
42432 49348 10219 99564 70165 82692 85914 81874 60401 37323 80781 59989 00844 82734 60942
68547 85157 26956 52508 10019 18964 03084 21624 95686 76579 53032 44148 74984 81609 42544
26081 21040 57502 30827 61940 50305 13410 22158 91529 35888 48318 13355 12491 31827 31256
16113 01090 72822 51906 23547 06985 93466 74652 33329 18298 75319 55988 76412 47573 49236
88368 50633 62276 50244 14896 21158 49633 92045 25400 49228 20287 69106 32732 88075 20196
37861 95795 39254 87408 16929 87171 38600 61330 80663 56488 43425 08589 53842 39410 55751
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Cox regression  131

data
binary  12–28, 52–61
grouped, standard deviation

17–19, 18
paired  56–9, 57
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bar charts  7–9, 9
box–whisker plot  6–7, 7
common questions  9–10
dot plots  6, 6
dynamite plunger plot  9
histograms  7, 8

histogram/bar chart distinction  9
in papers  10
stem and leaf plots  3, 3, 3–4, 4
see also data summary

data summary  1–11
common questions  9–10
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quantitative variables  1, 1–2
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design  135–8

matched parallel  136
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quasi-experimental  137
reading/reporting  142
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ranked see rank score tests
t tests  71–2

distribution
Normal see Normal distribution
skewed  18–19

dot plots  6, 6
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empirical normal range  40
errors

common questions  49–50
type I  46–7, 50
type II  49, 50

exact probability test  95–101
common questions  100
notation  96
see also Fisher’s exact test
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Fisher’s exact test  95–101
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reading/reporting  100
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distribution
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histograms  7, 8, 10
bin widths  10
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histogram/bar chart distinction  9

hypothesis testing
alternative hypothesis  49
confirmatory hypotheses  139
null hypothesis  46–8
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power of study  49
study hypothesis  49

independent variable  112, 113
inference  41
interquartile range  5

data display in papers  10

Kaplan–Meier survival curve
126–7

leaf plots  3, 3, 3–4, 4
least squares estimate  119
logged data  19, 19, 19–20
log rank test  129–31, 133

Mann–Whitney U test  105–8, 150
comparing means/medians  108
relation to t test  109

McNemar’s test  57, 90–1, 91, 92
notation  90

mean  12–14
application  25–6
confidence interval  63–4
differences between  44–51

confidence interval  45–6
standard error  44–5

geometric  20
standard error  33–4

measured variables  1, 1–2
measurement error, standard

deviation  20
median  12

application  25–6
comparison by non-parametric

tests  108
data summary  4, 4–5

mid point see median
mid P value  99

nominal variables  1, 2
non-parametric tests  102, 108
non-random sampling, problems

35–6
Normal distribution  13

curve  13, 14
standard deviation measure  14,

14, 147, 147
normal range  40
null hypothesis  46–7, 49–50

number needed to harm (NNH)
22, 25

number needed to treat (NNT)  22, 25

odds, binary data relationships  23–4
odds ratio  23–5, 24, 26

confidence interval for  54–5
one sided P value  48
one sided test  50
one way analysis of variance  74
ordinal variables  1, 2
outliers  5

paired alternatives  56–9, 57
paired data  56–9, 57
Pearson’s correlation coefficient  111–15
percentages

confidence interval for
differences  53

standard error of differences  35, 52
pie-charts, data display in papers  10
populations  29

common questions  42
parameters  29
reading/reporting  37
sample mean difference  64–5
see also samples

power, of study  49
precision  32
probability

exact probability test  95–101
see also exact probability test
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P value  47–50

see also P value
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see also odds

proportional hazards assumption  129
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confidence interval for
differences  53

significance test for
differences  53–4

standard error of differences  35, 52
χ2 comparisons  85–6

P value  47–8, 49–50
common questions  49–50
mid P value  99
one-sided  48
reading and reporting  50–1
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quantitative data  1, 1–2, 12–28
quantitative variables

continuous  1, 1–2
counted  1, 2
measured  1, 1–2

quartiles  5

randomisation  32
blocked  32

random sampling  30–1, 152
stratified  31
systematic  31

range  4
empirical normal  40
interquartile  5
normal  40
reference  40

rank score tests  102–10
common questions  108–9
critical points of rank sums  151
paired samples  102–4

Wilcoxon test  102–4, 150
reading/reporting  109
unpaired samples  104–8

Mann–Whitney U test  105–8, 150
see also Mann–Whitney U test

reference ranges  39–40
confidence interval differences  42

regression
application  123–4
assumption testing  123
coefficient  118–19
common questions  123–4
Cox regression  131
equation  118–23
least squares estimate  119
line  118–22
logistic  26–7
multiple  123
reading/reporting  124

relative risk (RR)  23, 25, 26
relative risk reduction (RRR)  23, 25
risk

absolute risk reduction (AAR)  22, 25
relative risk (RR)  23, 25, 26
relative risk reduction (RRR)  23, 25

risk ratio  23

samples  29–37
accuracy  32

central limit theorem  33–4
convenience  33
mean

confidence interval  45–6, 63–4
differences see t test
standard error  33–4, 44–5

non-random, problems  35–6
paired  102–4

Wilcoxon test  102–4, 150
population mean differences see t test
precision  32
random  30–1, 152
randomisation  32
reading/reporting  37
response rates  36
size  138–9
stratified random  31
systematic random  31
unbiased  31–2
unpaired  104–8

Mann–Whitney U test  105–8, 150
variation between  33

sample size  138–9
scatter diagrams  111–13

data display in papers  10
significance test

correlation  115–16
difference in two proportions  53–4

skewed distribution  18–19
Spearman rank correlation  116–17
standard deviation (SD)  12–14, 26

calculator procedure  16–17
coefficient of variation (CV%)  21
grouped data  17–19, 18
measurement error  20
Normal distribution measure

14, 14, 147, 147
reference ranges  39–40, 147
standard error  34, 36–7
between subjects  20–1
within subjects  20–1
unequal  69–71
ungrouped data  14–16, 16

standard error (SE)
application  36–7
confidence interval calculation

41, 59–60
means  33–4

difference between  44–5
proportions/percentages  35
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difference between  52
significance calculation  53–4,

59–60
standard deviation differences  36
summary statistics of binary

data  52–61
of a total  55–6

stem and leaf plots  3, 3, 3–4, 4
range  4

stratified sampling  31
Student’s t test see t test
study

carryover effect  136
case–control  135, 136
cluster trials  136
cohort  137
control  137–8
crossover  136
cross–sectional  138
design see design
double blinded  136
hypothesis testing see hypothesis

testing
placebo effects  136
power  49
prevalence  139
prospective  135
randomisation  135
randomised controlled trials  135
recall bias  138
sample size  138–9
sequential trials  136
statistical test selection  139–42,

140, 141
study hypothesis  49
summary statistics  12–28, 52–61

common questions  25–7
reading/displaying  27
see also mean; standard

deviation (SD)
survival analysis  126–34

censored observations  126, 133
Kaplan–Meier survival curve

126–7
log rank test  129–31, 133
proportional hazards

assumption  129
reading/reporting  133
survival curve calculation  127–9

systematic random sampling  31

test selection  139–42, 140, 141
trends, χ2 test  87–9
t test  62–77

common questions  74–5
confidence interval for small

sample mean  63–4
difference  71–2
equality of standard deviations  75
mean differences

paired samples  71–4
sample/population means  64–5
two samples  66–9

Normality testing data  74
one sample  64–5
one way analysis of variance  74
paired  71–4, 75
preparations  74–5
procedure  68
reading/reporting  75
relation to Mann–Whitney

U test  109
significance test of correlation

115–16
t distribution  148
unequal standard deviations

69–71
two sided test  50
type I error  46–7, 50
type II error  49, 50

unbiasedness  31–2
unbiased samples  31–2
unpaired samples see samples

variables
binary  1, 2
categorical  1, 2
continuous  1, 1–2
correlation/causality  123
counted  1, 2
dependent  112, 113
independent  112, 113
input  140
measured  1, 1–2
nominal  1, 2
ordinal  1, 2
outcome  140
quantitative  1, 1–2
test selection  140, 141

variance  15–16
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variation coefficient (CV%),
standard deviation  21

variation measurement
data summary  5, 6
interquartile range  5
outliers  5
quartiles  5
standard deviation  13–14

Welsh’s test  70
Wilcoxon test  102–4, 150

Yates’ correction  84–5
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